奇摄动向量问题的边界层和内层现象
Boundary and Interior Layer Behavior for Singularly Perturbed Vector Problem
-
摘要: 本文考虑非线性向量边值问题:εy″=f(x,y,z,y',ε), y(0)=A1 y(1)=B1 εz″=f(x,y,z,z',ε), z(0)=A2 z(1)=B2其中ε是正的小参数,0≤x≤1,f,g是R4中的连续函数。在适当的假设下,利用微分不等式理论,我们证明了上述问题的解的存在性,并得到包括边界层和内层在内的解的估计.Abstract: In this paper, we consider the vector nonlinear boundary value problem:εy″=f(x,y,z,y',ε), y(0)=A1 y(1)=B1 εz″=f(x,y,z,z',ε), z(0)=A2 z(1)=B2 where ε>0 is a small parameter,0≤x≤1 f and g are continuous functions in R4. Under appropriate assumptions, by means of the differential inequalities, we demonstrate the existence and estimation, involving boundary and interior layers, of the solutions to the above problem.
-
Key words:
- singular perturbation /
- differential inequality /
- boundary layer /
- inner layer
-
[1] 莫嘉琪,用微分不等式对二阶拟线性方程奇摄动解的估计,数学研究与评论,.(1988), 86-91. [2] Hooves.F. A., Effective characterization of the asymptotic behavior of solutions of singularly perturbed boundary value problem, SIAM. J. Appl. Mcrth.,30,(1976), 296-305. [3] Hooves, F.A., Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems. SIAM. J. Math:. Anal., 13, 1(1982),6l-82. [4] Lin Zhong-chi(林宗池), Sorne estimations of solution of nonlinear boundary value problem for second order systems, 数学物理学报,7, 2 (1987), 229-259. [5] Lin Zhong-chi(林宗池), The higher order approximation of solution of quasilinear second order systems for singular perturbation, Chin. Ann. of Math., 8B, 3(1987), 357-363. [6] Chang, G. W., Diagonalization method for a vector boundary value problem of singular perturbation type, J. Math. Anal. Appl.,48(1974), 652-665. [7] Kelley, W.G.Existence and uniqueness of solutions for vector problems containing small parameters. J. Math. Anal. 4pp1.,131(1988), 295-312 [8] Lan, Chin-chin, Boundary value problem for second and third order differential equations,.J. Diff.Equs, 18, 2(1975), 258-274. [9] 刘光旭,关于奇摄动拟线性系统,应用数学和力学,8 1 (1987), 987-978.
计量
- 文章访问数: 2055
- HTML全文浏览量: 152
- PDF下载量: 655
- 被引次数: 0