极限方程为椭圆-抛物的四阶椭圆型方程的奇摄动
Singular Perturbation of the Fourth Order Elliptic Equation When the Limit Equation Is Elliptic-Parabolic
-
摘要: 本文研究了极限方程为椭圆-抛物的四阶椭圆型方程-ε2Δ2u+ym∂2u/∂y2+∂2u/∂x2+a(x,y)∂u/∂y+b(x,y)∂u/∂x+c(x,y)=0的奇摄动问题,其中ε为正的小参数,m为正的实数,Δ为拉普拉斯算子,a,b,c充分光滑.在适当的假设下,导出可解性的充分条件,证明了解的存在和给出任意阶的一致有效的渐近解.Abstract: In this paper we cosider the singular perturbation of the fourth order elliptic equation-ε2Δ2u+ym∂2u/∂y2+∂2u/∂x2+a(x,y)∂u/∂y+b(x,y)∂u/∂x+c(x,y)=0 when the limit equationis elliptic-parabolic, where ε is a positive parameter, Δ is a positive real number, A is Laplacian operator, a,b,c are sufficiently smooth. Under appropriate condition we derive the sufficient condition of solvability and prove the existence of solution and give a uniformly valid asymptotic solution of arbitrary order.
-
Key words:
- Singular perturbation /
- limit equation /
- elliptic equation
-
[1] 林宗池,苏联科学院报告,157, 3 (1964), 522-525. [2] 林宗池,《第五届边界层和内层计算和渐近方法国际会议记录》,英国爱尔兰,Boole出版社(1988),212-217. [3] de Jager E, M.,Lecture Notes in Math,280(1972), 73. [4] Grasman,J, and B.J.Matkowsky, SIAM.J.Appl.Math,32(1977), 588. [5] 高汝熹,复旦学报(自然科学版),20, 3 (1981), 296-305; 21, 4 (1982), 367-378. [6] И.Г.彼得罗夫斯基著,《偏微分方程讲义》,苏联国家技术理论书籍出版社(1956). [7] Келдыш М.В.,苏联科学院报告,77, 2 (1961), 181-183. [8] Олейник,苏联科学院报告,77, 6, (1956), 885-888. [9] Вишик М.И.,苏联科学院报告,91 (1953), 225-229, 93 (1953), 9-12;苏联数学进展,9, 1 (59), (1954) 138-143;数学汇刊,35, (77), (1954), 313-368. [10] 江福汝,关于边界层方法,应用数学和力学,2, 5 (1981), 461-473. [11] Nayfeh, A, H.,《摄动法引论》,New York (1981).
计量
- 文章访问数: 2132
- HTML全文浏览量: 107
- PDF下载量: 511
- 被引次数: 0