一般符号动力系统的浑沌性态*
Chaotic Behaviour of the General Symbolic Dynamics
-
Abstract: This paper extends symbolic dynamics to general cases, Some chaotic properties and applications of the general symbolic dynamics(∑(X), σ) and its special cases are discussed, where X is a separable metric space.
-
Key words:
- symbolic dynamics /
- chaos /
- shift-invariant set
-
[1] Devaney,R.,An Introduction to Chaotic Dynamical Systems,Addison-Wesley Pubiishing Company,Inc,(1987). [2] 傅新楚,非紧致符号空间上移位映射的Li-Yorke浑沌性态,非线性动力学研讨会交流论文,中国科技大学(1990). [3] 傅新楚,自映射的无穷阶移位不变集,同上,并刊于《青年论文荟萃—常微分方程专辑》,科学出版社(1991). [4] Wiggins,S,,Global Bifurcations and Chaos:Analytical Methods,Springer Verlag(1988). [5] 张筑生,《微分动力系统原理》,科学出版社(1987). [6] 郭友中、周焕文、分叉、怪引子、阵发性与浑沌,力学进展,14(3)(1984),255-274. [7] Li,T,Y.and J.A,Yorke. Period three implies chaos,Amer. Math.Monthly,82(1975),985-992. [8] 周作领.转移自映射的紊动性状,数学学报.30(2)(1979),284-288. [9] 周作领,紊动与全紊动.科学通报,(4)(1987),248-250. [10] Zhou,Z.L.(周作领).The topological Markov chain,Acta Math,Sinica(New Series),4(4)(1988),330-337.
计量
- 文章访问数: 1820
- HTML全文浏览量: 84
- PDF下载量: 485
- 被引次数: 0