留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性振动系统的异宿轨道分叉、次谐分叉和混沌

张伟 霍拳忠 李骊

张伟, 霍拳忠, 李骊. 非线性振动系统的异宿轨道分叉、次谐分叉和混沌[J]. 应用数学和力学, 1992, 13(3): 199-208.
引用本文: 张伟, 霍拳忠, 李骊. 非线性振动系统的异宿轨道分叉、次谐分叉和混沌[J]. 应用数学和力学, 1992, 13(3): 199-208.
Zhang Wei, Huo Quan-zhong, Li Li. Heteroclinic Orbit and Subharmonic Bifurcations and Chaos of Nonlinear Oscillator[J]. Applied Mathematics and Mechanics, 1992, 13(3): 199-208.
Citation: Zhang Wei, Huo Quan-zhong, Li Li. Heteroclinic Orbit and Subharmonic Bifurcations and Chaos of Nonlinear Oscillator[J]. Applied Mathematics and Mechanics, 1992, 13(3): 199-208.

非线性振动系统的异宿轨道分叉、次谐分叉和混沌

Heteroclinic Orbit and Subharmonic Bifurcations and Chaos of Nonlinear Oscillator

  • 摘要: 在参数激励与强迫激励联合作用下具有van der Pol阻尼的非线性振动系统,其动态行为是非常复杂的.本文利用Melnikov方法研究了这类系统的异宿轨道分叉、次谐分叉和混沌.对于各种不同的共振情况,系统将经过无限次奇阶次谐分叉产生Smale马蹄而进入混沌状态.最后我们利用数值计算方法研究了这类系统的混沌运动.所得结果揭示了一些新的现象.
  • [1] Holmes, P. J. and R. A. Rand, Phase portraits and bifurcations of the nonlinear oscillator:x+(a+γx2)x-βx+δx3=0 Int. J. Nonlinear Mech., 15, 1 (1980), 449-458.
    [2] Greenspan B. D. and P. J. Holmes, Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators, SIAM J. Math. Anal., 15 (1984), 69-97.
    [3] 唐建宁、刘曾荣,2-jet和3-jet 系统中的复杂分叉现象,应用数学学报,11(2) (1988), 173-181
    [4] Guckenheimer, J. and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York (1983).
    [5] Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
    [6] Greenspan, B. D., and P. J. Holems, Homoclinic orbits, subharmonics and global bifurcations in forced oscillations, Nonlinear Dynamics and Turbulence, G. Barenblatt, G. Ioose, and D. D. Joseph(eds), Pitman, London, (1983), 172-214.
    [7] Melnikov, V. K., On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc., 12 (1963), 1-57.
    [8] Holmes, P. J., Averaging and chaotic motions in forced oscillations, SIAM J. Appl. Math., 38(1980), 65-80.
    [9] Hale, J. K., Ordinary Differential Equations, 2nd Edition, Kreiger Publ. Co. (1980).
    [10] Hale, J. K. and X.-B. Lin, Heteroclinic orbits for retarded functional differential equation,J. Diff. Eqs., 65 (1986), 175-202.
    [11] Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press (1980).
    [12] 万世栋、李继彬,Jacobi椭圆函数有理式的Fourier级数.应用数学和力学,9 (6) (1988),499-513
    [13] Brunsden, V., J. Cortell and P. J. Holmes, Power spectra of chaotic vibrations of a buckled beam, J. Sound Vib., 130, 1(1989), 1-25.
  • 加载中
计量
  • 文章访问数:  2521
  • HTML全文浏览量:  145
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  1991-01-21
  • 刊出日期:  1992-03-15

目录

    /

    返回文章
    返回