一类食饵具常数存放率的Kolmogorov生态系统*
A Class of Kolmogorov’s Ecological System with Prey Having Constant Adding Rate
-
摘要: 本文利用定性分析方法,研究了一类食饵具有常数存放率的Kolmogorov生态系统,讨论了系统平衡点的相对位置和性态,可行平衡点的全局稳定性,给出了一组解的有界性、系统无环性以及极限环的存在唯一性的条件,推广了文[1]和[2]的主要结果.Abstract: In this paper, by using the qualitative method, we study a class of Kolmogorov's ecological system with prey having constant adding rate, discuss the relative position and the character of the equilibriums, the global stability of the practical equilibriums and give a group of conditions for the boundedness of the solutions, the nonexistence, the existence and the uniqueness of the limit cycle of the system. Most results obtained in papers [1] and [2] are included or generalized.
-
Key words:
- ecological system /
- differential equations /
- global stability /
- limit cycle /
- existence /
- uniqueness
-
[1] 陈均平、张洪德,具功能性反应的食饵一捕食者两种群模型的定性分析,应用数学和力学,7(1)(1986),73-80. [2] 王成文,一类食饵具有常数存放率的生态系统,山东矿业学院学报,10(1)(1991),91-100. [3] 陈兰荪,《数学生态学模型及研究方法》,科学出版社,北京(1988),130-156. [4] 叶彦谦等,《极限环论》,第二版,上海科学技术出版社(1984),7-20,247-249. [5] 张芷芬等,《微分方程定性理论》,科学出版吐,北京(1985),130-159,266-277. [6] 秦元勋等,《运动稳定性理论及应用》,科学出版社,北京(1981),23-27.
计量
- 文章访问数: 2189
- HTML全文浏览量: 147
- PDF下载量: 462
- 被引次数: 0