双参数地基上板弯曲问题的边界积分方程
Boundary Integral Equations for the Bending Problem of Plates on Two-Parameter Foundation
-
摘要: 本文应用广义函数的Fourrier积分变换导出了双参数地基上板弯曲问题的基本解,并将基本解展成一致收敛的级数形式.在此基础上,应用广义Rayleigh-Green公式建立了适用于任意形状、任意边界条件情形的两个边界积分方程,为边界元法在这一问题中的应用提供了理论基础.Abstract: By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.
-
[1] Selvadurai,A.P.S.,《土与基础相互作用的弹性分析》,中国铁道出版社(1984). [2] Katsikadelis,J.T.and A.E.Armenakas,Plates on elastic foundation by BIE method,J.Engng.Mech.,110,7 (1984),1086-1105. [3] Katsikadelis,J.T.and A.M.Armenakas,Analysis of clamped plates on elastic foundation by the boundary integral method equation method,J.Appl.Mech.,54(1984) 544-580. [4] Bezine,G.,A new boundary element method for bending of plates on elastic foundation,Int.J.Solids & Structures,24,6 (1988),557-565. [5] Puttonen,Jari and Pentti Varpasuo,Boundary element analysis of a plates on elastic foundations,Int.J.Numer.Mech.in Engineering,23 (1986),287-303. [6] Vlazov,V.Z.and U.N.Leontiev,Beams,Plates,and Shells on Elastic Foundations,Israel Program for Scientific Translations,Jerusalem (translated from Russian) (1966). [7] 杜庆华等合著,《边界积分方程方法—边界元法》,高等教育出版社(1989). [8] 王竹溪、郭敦仁,《特殊函数概论》,科学出版社(1979). [9] 吉林大学数学系编,《数学分析》(中册).人民教育出版社(1978).
计量
- 文章访问数: 1898
- HTML全文浏览量: 80
- PDF下载量: 664
- 被引次数: 0