U型波纹壳轴对称大挠度非线性变形问题(Ⅰ)——计及圆环壳的非线性变形、压缩角
Problems of U-Shaped Bellows with Nonlinear Deformation of Large Axlsymmetrical Deflection(Ⅰ)——Counting Nonlinear Deformations of Ring Shells and Compressed Angle of Bellows
-
摘要: 本文是文献[1、2]工作的继续,在以下方面作了发展:考虑了内、外圆环壳中面法线的中小转动变形(转角的平方与应变是同阶小量);计及了压缩角.计算结果与实验符合良好.本文方法对波纹壳的设计计算有实用价值,有关压缩角对特征关系影响的讨论有助于工程设计.Abstract: This paper is a conrinuous study of papers [1,2].There is some progress in dealing with moderately small rotations of middle surface normals of inside and outside ring shells and compressed angle of bellows.Calculation results agree with experiments well.To bellow design,the method given in this paper is of practical value and the discussion of the influence of compressed angle on characteristic relation is helpful.
-
Key words:
- U-shaped bellows /
- large axial deflection /
- compressed angle
-
[1] 钱伟长等,U型波纹管的非线性摄动法计算,应用数学和力学,4(5)(1983),595-602. [2] 徐志翘等,变厚度U型波纹壳大挠度问题的摄动解,清华大学学报,25(1),(1985)39-51. [3] 樊大钧,《波纹管设计学》,北京理工大学出版社,(1988). [4] 钱伟长等,轴对称圆环壳的复变量方程和轴对称细环壳的一般解,清华大学学报,19(1)(1879),27-47. [5] 钱伟长等,轴对称圆环壳的一般解,应用数学和力学,1(3)(1980),287-299. [6] 诺沃日洛夫,B.B.,《非线性弹性力学基础》,科学出版社(1958). [7] 安德列娃,A.E.,《波纹管的计算与设计》.国防工业出版社(1982). [8] Re issner,E.,On axisymmetrical deformations of thin shells of revolutioa Proc,Sump.Appl.,Math,,(Elasticity),(1950),27-52. [9] 诺沃日洛夫,B.B.,《薄壳理论》.科学出版社(1982). [10] 陈山林,圆环壳在一般载荷下的轴对称问题,应用数学和力学,7(5)(1986),425-134. [11] 戴福隆,波纹壳的光弹性贴片法应力测定,固体力学学报,(2)(1984),224-230.
计量
- 文章访问数: 1772
- HTML全文浏览量: 141
- PDF下载量: 539
- 被引次数: 0