广义重调和算子及其在薄板弯曲中的应用
Generaliaed Biharmonic Operator and Its Application to the Bending of Elastic Thin Plates
-
摘要: 本文用δ-函数具体构造出广义重调和算子,建立相应的二次泛函表达式,并将其应用于弹性薄板的弯曲问题。结果表明。当自变量函数为广义函数时,变分泛函中的自变量函数自然就允许某种程度的不连续性,用Lagrange乘子法所得的修正变分原理实际上是文中给出的变分原理的特殊形式。Abstract: In this paper, δ-function is used to construct the generalized biharmonic operators, the corresponding quadratic function is presented, and the latter is applied to the bending of elastic thin plates, The result shows that when the arguments in the variational functional are generalized functions, discontinuity to sone degree is allowed, and the modified variational principle by using the Lagrange multipliers is merely a special form of the result mentioned above.
-
Key words:
- δ-function /
- generalized derivative /
- thin plate /
- variation (mathematies)
-
[1] Fraeijs de Yeubeke, B,Y aristional principles and the patch test, International Journal for Numerical Methods in Engineering, 8(4)(1974). [2] Oden, J, T, and J, N, Reddy, An Introduction to the Mathematical Theorg of Finite Elements, A Wiley-Interscience Publication(1976). [3] 胡海昌,《弹性力学的变分原理及其应用》,科学出版社(1981). [4] 钱伟长.《广义变分原理》,知识出版社(1985). [5] Washizu, K.,Variational Methods in Elasticity and Plasticity, 3rd Ed.,Pergamon Press (1982). [6] Oden, J, T, and G. F, Carey, Finite Elements-Mathematical Aspects, Vol.IV,Prentice Hall Iac,(1983). [7] 俞中直,结构力学中的广义微分方程及其变分原理.大连理工大学学报.28(2)(1988). [8] 鹫津久一郎著,《弹性学の变分原理概论》,培風馆(1972).0
计量
- 文章访问数: 1898
- HTML全文浏览量: 77
- PDF下载量: 443
- 被引次数: 0