两种生物相互作用的反应扩散模型及解的讨论
On the Solution of Two Co-Affected Spedies
-
摘要: 本文讨论和年龄有关的两种生物相互作用的反应扩散模型,其中出生率函数具有指数衰减特征,文中引进了与资源环境有关的环境因子αi,及可控生育参数βi,并运用构造上、下解的方法研究了该模型解的存在性、唯一性及平衡解的局部渐近稳定性,研究发现,在其它参数相对稳定的情况下,生育参数βi的大小决定了种群发展的趋势。Abstract: This paper discusses a model of two coeffected species with diffusion system,where the birth functions have the characteristic index decline, and then the eircumstance factors αi which are connected with natural resources, and the birth parameters βi which could be controlled are introduced.By means of the upper-lowersolutions,the existence,uniqueness and the local stability of equilibrium solution of the moel are discussed.It's discovered that the birth parameters βi determine the developing tendency when other parameters are comparatively stable.
-
Key words:
- birth function /
- dead function /
- effection-diffusion equation /
- upper-lower solutions
-
[1] Gurtin, M. E. and R. C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Rat. Mech. Anal., 54(1974), 281-300. [2] 宋健,人口系统的稳定性理论和临界妇女生育率,自动化学报,7(1) (1981), 1-12. [3] 冯德兴,非线性人口发展方程的稳定性,数学物理学报,8(2) (1988), 159-167. [4] Venturino, E., Age-structure predater-prey models, Mathematical Modelling, 6 (1984), 117-128. [5] Langlais, M., Asympotic behavior in some evolution equation arising in population dynamics, Proceeding of Problems Elliptiques, Etparabliques Nonlinear, Nancy (1988). [6] Webb, G. F., Theory of Nonlinear Age-Dependent Population Dynamics, Manuscritp(1986). [7] Weinstock, E. and C. Rorres, Local stability of an age-structured population with density-dependent fertility and mortality, SIAM, J. Appl. Math., 47, 3 (1987), 589-603. [8] Pao, C. V., Coexistence and stability of a competition-diffussion system in population dynamics, J. Math. Anal. Appl., 83(1981), 54-74. [9] 叶其孝,《反应扩散方程引论》,科学出版社(1990).
计量
- 文章访问数: 2153
- HTML全文浏览量: 166
- PDF下载量: 450
- 被引次数: 0