留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对流动稳定性非线性理论中确定幅值演化方程系数的重新考虑*

罗纪生

罗纪生. 对流动稳定性非线性理论中确定幅值演化方程系数的重新考虑*[J]. 应用数学和力学, 1994, 15(8): 709-712.
引用本文: 罗纪生. 对流动稳定性非线性理论中确定幅值演化方程系数的重新考虑*[J]. 应用数学和力学, 1994, 15(8): 709-712.
Luo Ji-sheng. The Re-Examination of Determining the Coefficient of the Amplitude Evolution Equation in the Nonlinear Theory of the Hydrodynamic Stability[J]. Applied Mathematics and Mechanics, 1994, 15(8): 709-712.
Citation: Luo Ji-sheng. The Re-Examination of Determining the Coefficient of the Amplitude Evolution Equation in the Nonlinear Theory of the Hydrodynamic Stability[J]. Applied Mathematics and Mechanics, 1994, 15(8): 709-712.

对流动稳定性非线性理论中确定幅值演化方程系数的重新考虑*

基金项目: * 国家教委优秀青年教师资助

The Re-Examination of Determining the Coefficient of the Amplitude Evolution Equation in the Nonlinear Theory of the Hydrodynamic Stability

  • 摘要: 求解扰动速度幅值的演化规律,是流动稳定性非线性理论的关键问题之一。现有的方法都只能用于准中性的情况,或其中有一定的人为因素。本文将给出解决这一问题新方法。
  • [1] Reynolds,W.C.and M.C.Potter,Finite amplitude instability of parallel shear flows,J.F.M.,27(1967),465-492.
    [2] Iton,N.,SlSatial growth of finite wave disturbances in parallel and nearly parallel flows,Part I.Theoreti,cal analysis and the numerical results for plane Poiseuille flow,Trans.Japan Soc.Aero.Space Sci.,17(1974),160-174.
    [3] Itoh,N.,Nonlinear stability of parallel flows with subcritical Reynolds.number,Part 1.An asymptotic theory valid for small amplitude disturbances,J.F.M.,89.(1977),455-467.
    [4] Davey,A.,On Itoh's finite amplitude stability theory for pipe flow,J.F.M..86(1978),695-703.
    [5] Zhou,H.,On the nonlinear theory of stability of plane Poiseuille flow in subcritical range,Proc.Soc.Roy.Lond.,A,318(1982),407-418.
    [6] Herbert,T.,On perturbation methods in nonlinear stability theory,J.F.M.,126(1983),167-186.
  • 加载中
计量
  • 文章访问数:  1845
  • HTML全文浏览量:  112
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  1993-03-24
  • 刊出日期:  1994-08-15

目录

    /

    返回文章
    返回