留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑型截口定理及应用*

张石生 吴鲜

张石生, 吴鲜. 拓扑型截口定理及应用*[J]. 应用数学和力学, 1995, 16(2): 123-131.
引用本文: 张石生, 吴鲜. 拓扑型截口定理及应用*[J]. 应用数学和力学, 1995, 16(2): 123-131.
Zhang Shi-sheng, Wu Xian. Topologicai Version of Section Theorems with Applications[J]. Applied Mathematics and Mechanics, 1995, 16(2): 123-131.
Citation: Zhang Shi-sheng, Wu Xian. Topologicai Version of Section Theorems with Applications[J]. Applied Mathematics and Mechanics, 1995, 16(2): 123-131.

拓扑型截口定理及应用*

基金项目: * 国家自然科学基金

Topologicai Version of Section Theorems with Applications

  • 摘要: 本文给出一个新型的KKM定理,并用它得到拓扑型截口定理,在第四节至第五节应用此截口定理给出了Browder-Hartman-Stampacchia变分不等式[3].隐变分不等式[8],抽象形式变分不等式[19]的解的存在性定理,和一个集值映射的不动点定理。其结果不仅包含TBrowder[3]中的主要结果为特例,而且,改进和发展了引文[1~19]中的相应结果。
  • [1] Bardaro,C.and R.Ceppitelli,Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities,J.Math.Anal.Appl.,132(1988),484-490.
    [2] Bardaro,C.and R.Ceppitelli,Applications of generalized Knaster-Kuratowski-Mazukiewicz theorem to variational inequalites,J.Math.Anal.Appl.,137(1989),46-58.
    [3] Bardaro,C.and R.Ceppitelli,Fixed point theorems and vector-valued minimax theorems,J.Math.Anal.Appl.,146(1990).363-373.
    [4] Browder,F:E.,A new generalization of the Schauder fixed point theorem,Math.Ann.,174(1967).285-290.
    [5] Browder,F.E.,The fixed point theory of multi-valued mappings in topological vector space,Math.Ann.,177(1968),283-301.
    [6] Chang Shih-sen and Ma Yi-hai,Generalized KKM theorem on H-space with applications,J.Math.Anal.Appl.163(1992),406-421.
    [7] Chang Shih-sen and Zhang Ying,cieneralized KKM theorem and variational inequalities,J.Math.Anal.Appl.,159(1991).208-223.
    [8] Fan,K.,A minimax inequality and applications,Inequalities Ⅲ,Ed.by O.Shisha.Academic Press,New York(1972),103-113.
    [9] Fan,K,Fixed point and related theorems for noncompact convex sets,Game Theory and Releated Topics,Eds.by O.Moeschlin and D.Pallaschke,North-Holland(1979),151-156.
    [10] Fan,K.,Some properties of convex of convex set related to fixed point theorems,Math.Ann.,266(1984).519-537.
    [11] Ko,H.M.and K.K.Tan,A coincidence theorem with application to minimax inequalities and fixed point theorems,Tamkang J.Math.,17(1986),37-43.
    [12] Lassonde,M.,On the use of KKM multifunctions in fixed point theory and related topics,J.Math.Anal.Appl.,97(1983),151-201.
    [13] Park,S.,Generalizations of Ky Fan's Matching theorems and their applications,J.Math.Anal.Appl.,141(1989),164-176.
    [14] Shih,M.H.and K.K.Tan,A geometric property of convex sets with applications to minimax type inequalities and fixed point theorems,J.Austral.Math.Soc.,Series A.,45(1988).169-183.
    [15] Shih,M.H.and K.K.Tan,The Ky Fan minimax principle,sets with convex sections and variational inequalities,DiJrerentia! Geometry-Calculus or Variational and Their Applicnrions,Eds.by M.Rassias and T.Rassia,New York(1985),471-481.
    [16] Takahashi,W.,Fixed point minimax and Hahu-Banach theorems,Proc.Suympos.Pure Math.,45.Part 2(1986).419-427.
    [17] Tan,K.K.,Comparison theorems on minimax inequalities,variational inequalities and fixed point theorems,J.London Math.Soc.,23(1983),555-562.
    [18] Yen,C.L.,A minimax inequality and its applications to variational inequalities,Pacific J.Math.,97(1981).477-481.
    [19] Gwinner,J.,On some fixed points and variational inequalities——A circular tour Nonliuenr Annl.,5.5(1981).565-583.
  • 加载中
计量
  • 文章访问数:  1892
  • HTML全文浏览量:  115
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-04-04
  • 刊出日期:  1995-02-15

目录

    /

    返回文章
    返回