夹芯梁的精确解法
Exact Solution of Sandwich Beams
-
摘要: 夹芯梁与普通梁的本质区别在于剪切引起芯层横截面严重的而又不均匀的翘曲变形,其应力分布已远非初等理论所能描述,而正在广泛应用的经典夹层理论却都建立在平面假设基础上,尤其不能正确反映弱芯的轻质夹层结构的行为,本文放弃了不合理的假设,将夹芯梁视为一般层状弹性体,严格按弹性理论导出了既满足控制方程又同时满足全部边界条件、层间的应力及位移的连续条件的封闭解.它可确切地反映夹芯梁的位移形态和应力分布,并从不同角度,包括多种实验和FEM数值解,验证了它的正确性.Abstract: Seriously non-uniform warping cross-sections due to shear effects sharply expose the essential difference between solid and sandwich beams.Actually,the deflected configuration and stress distributions in sandwich beams are far beyond the scope that the elementary bending theory is applicable for their description.For analysis of sandwich beams,the most extensively employed classical theories are based on such assumption as the whole cross-section or each individual layer thereof remains plane for bent configuration.As a matter of fact,theories based on such assumptions appear particularly incapable of depicting the mechanical characteristic behavior of sandwich beams,with a weak core in particular.Not relying on any assumptions,the present work tends to have the sandwich beam considered as layered elastic continuum.Close solution thereupon obtained satisfies the governing equations,the boundary conditions,as well as the stress continuity and displacement compatibility requirements on interlayer interfaces.Experimental studies and numerical(finite element analysis) examinations favorably justify the validity of the present solution together with its superb capability of representing the displacement responses and stress distributions in sandwich beams.
-
Key words:
- Sandwich beam /
- nexural theory /
- warping /
- non-unirorm /
- close solution /
- exact solution
-
[1] 中国科学院力学所,《夹层板壳的弯曲、稳定和振动》,科学出版社(1977). [2] 王震鸣,《复合材料力学和复合材料结构力学》,机械工业出版社(1991),365-375. [3] S.W.Tsai,Composites Design,4th edit.,Think Composites,Dayton,Ohio,USA(1989),8.5-8.7 [4] 程华、刘方龙,复合材料夹层板弯曲修正的Reissnor理论,复合材料学报,7,(4)(1990),17-26. [5] 剑持洁,关于夹层梁的挠度,日本复合材料学会志,4,1(1978) 39-44. [6] R.G.Drysdale,F.Betancourt-Augel and G.B.Haddad,Thick skin sand wich beam columns with weak cores,Journal of the Structural Division,ASCE,105,12(1979),2601-2619. [7] J.E.Schoutens,Direct measurements of non-linear stress-strain curves and elastic properties of metal matrix composite sand wich beams with any core material,Journal of Materials Science,20(1985),4421-4430. [8] S,I.Timoshenko and J.M.Gere,Mechanics of Materials,Van Nostrand Reinhold Company,New York(1972),201-208. [9] A.F.Johnson and G.D.Sims,Mechanical.properties and design of sand wich materials,J.Composites,17,4(1986),321-327. [10] C.L.Dym and I.H.Shomes,Solid Mechanics:a Variational Approach,《固体力学变分法》,袁祖贻等译,中国铁道出版社(1973),175-212. [11] 奚绍中、郑世赢,《应用弹性力学》,中国铁道出版社(1981),49-59. [12] 金尧、郑世赢,完整的级数应力函数,力学与实践,14,6(1992),56-57. [13] 徐芝纶,《弹性力学》,人民教育出版社(1979),46-47. [14] 李顺林,《复合材料工作手册》,航空工业出版社(1988),223-225. [15] 周祝林,夹层结构受计,玻璃钢杂志,59(1985),17-38.
计量
- 文章访问数: 2156
- HTML全文浏览量: 98
- PDF下载量: 547
- 被引次数: 0