空间实体与薄板组合结构的数学模型
Mathematical Model of a Junction between Linear Elastomer and Thin Plate
-
摘要: 本文利用变换将空间实体与薄板的组合结构转化为较易研究的等价问题,进而用摄动的思想研究了在体力作用下,依赖于板厚度的位移解簇的收敛性及其极限满足的变分方程.Abstract: In this paper,a kind ofjunction problem between linear elastomer elastomer and thin plateis changed.through a well scaling.into an equivalent problem which is studied easily.Then,using an idea of disturbance we have studied the convergence of the displacement vector.field under the action of body.force,which is depending on the thickness of the plate.At last,the variational equations of the limit are obtained.
-
Key words:
- junction /
- scaling /
- junction condition /
- convergence
-
[1] P.G.Ciarlet.H.Le.Dret & R.Nzengwa,Junctions between Three-Dimensional and Two-Dimensional Linearly Elastic Structures,ESCP on MPNM(report Series No.3)(1988) [2] R.A.Adams.Soboler Space,Academic Press,New York(1975). [3] G.Duvant & J.L.Lions,Les Inequations en Mecanique et en Physique Dunod,Paris(1972). [4] 冯康、石钟慈,《弹性结构的数学理论争,科学出版社(第二版)(1981). [5] P.G.Ciarlet & P.Destuyder.A justification of the two-dimensional linear plate model,Journal de Mecanique.18(2)(1979),315-344. [6] P.G.Ciarlet,Mathematical Elasticity,Vol.I:Three-Dimensional Elasticity,North-Holland P.C.,Amsterdam(1988).
计量
- 文章访问数: 1734
- HTML全文浏览量: 104
- PDF下载量: 417
- 被引次数: 0