高阶椭圆型偏微分方程奇异摄动问题一致收敛差分格式
A Uniformly Convergent Difference Scheme for the Singular Perturbation Problem of a High Order Elliptic Differential Equation
-
摘要: 本文,我们讨论了一类高阶椭圆型偏微分方程奇异摄动问题。给出了连续问题解的先验估计。另外,我们还提供了一种数值求解该类问题的指数型差分格式。最后,证明了差分问题的解在能量范数意义下关于小参数一致收敛到连续问题的解。Abstract: In this paper, we first consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the priori estimation of the solution of the continuous problem. Then, we present an exponential fitted difference scheme and discuss the solution properties of the difference equations. Finally, the uniform convergence of this scheme with respect to the small parameter in the discrete energy norm, is proved.
-
Key words:
- elliptic /
- singular perturbation /
- difference scheme /
- uniform convergence
-
[1] O.A.Ladyzhenskaya,The Boundary Problems of Mathematical Physics,Springer-Verlag (1985). [2] K.Niijima,A uniformly convergent difference scheme for a semilinear singular perturbation problem,Numer.Math.,43 (1984) 175-198. [3] 苏爆城,《奇异摄动中的边界层校正法》,上海科技出版社(1983). [4] 苏爆城、吴启光,《奇异摄动问题数值方法引论》,重庆出版社(1991). [5] 苏湿城、刘国庆,四阶椭圆型奇异摄动问题渐近解,应用数学和力学,11(7) (1990),597-610, [6] 苏煌城、刘国庆,四阶椭圆型奇异摄动问题的数值解,应用数学和力学,12(10) (1991),879-901
计量
- 文章访问数: 2034
- HTML全文浏览量: 154
- PDF下载量: 554
- 被引次数: 0