留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性双空间张量方程φijAiXBj=C

陈玉明 肖衡 李建波

陈玉明, 肖衡, 李建波. 线性双空间张量方程φijAiXBj=C[J]. 应用数学和力学, 1996, 17(10): 919-926.
引用本文: 陈玉明, 肖衡, 李建波. 线性双空间张量方程φijAiXBj=C[J]. 应用数学和力学, 1996, 17(10): 919-926.
Chen Yuming, Xiao Heng, . The Linear Bi-Spatial Tensor Equation φijAiXBj=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 919-926.
Citation: Chen Yuming, Xiao Heng, . The Linear Bi-Spatial Tensor Equation φijAiXBj=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 919-926.

线性双空间张量方程φijAiXBj=C

The Linear Bi-Spatial Tensor Equation φijAiXBj=C

  • 摘要: 本文在对系数张量的特征值不作任何限制的条件下,得到了一类线性双空间张量方程的显式解。这类方程包含了许多经常遇到的方程作为其特例。
  • [1] M, Wedderburn,Note on the linear matriz equation, Proc, Edirtgburgh Math,Soc.,22 (1904),49-53.
    [2] D,Z,Rutherford, On the solution of the matriz equation AX+XB=C,Nederl,Wetensch, Proc.,Ser,A,35(1932),53-59.
    [3] W,E, Roth,The equation AX-YB=C and AX-XB=C in matrices, Proc,Amer,Math, Soc.,3(1952),392-396.
    [4] M,Rosenblum,On the operator equation BX-XA=Q,Duke Math,J.23 (1956),263-270
    [5] G, Lumer and M, Rosenblum, Linear operator equations, Proc,Amer, Math,Soc.,10 (1959),32-41.
    [6] Ma Er-chieh, A finite series solution of the matrix equation AX-XB=C,SIAM J,Appl,Math.,14 (1966),490-495.
    [7] R.A,Smith,Matrix equation XA+BX=C,SIAM J.Appl,Math.,16(1968),198-201.
    [8] A.Jameson, Solution of the equation AX+XB=C by inversion of a MXM or NXN matrix SIAM J, Appl, Math.,16(1968),1020-1023.
    [9] M, Rosenblum, The operator equation BX-XA=Q with selfadjoint A andB,Proc,Amer,Math,Soc.,20 (1969),115-120.
    [10] P, Lancaster, Explicit solutions of linear matrix equations, SIAM Reviews,12 (1970),544-566.
    [11] P,C, Müiller,Solution of the matrix equation AX+XB=-Q and STX+XS=-Q,SIAM J,Appl,Math.,18 (1970),682-687.
    [12] R.E, Hartwig, Resultants and the solution of AX-XB=C,SIAM J,AppI,Math.,23 (1972),104-117.
    [13] R.H, Bartels and G,W.Stewart,Solution of the equation AX+XB=C,Comm,ACM,15(1972),820-826.
    [14] V,Kucěra,The matrix equation AX+XB=C,SIAM J.Appl, Math.,26(1974),15-25.
    [15] W.T.Vetter,Vector structures and solutions of linear m atria equations,Linear Algebra Appl.,10(1975),181-1889.
    [16] .
    [17] J.Z,Hearson,Nonsingular solutions of TA-BT=C.Linear Algebra Appl.,16 (1977),57-83.
    [18] A, Bickart, Direct solution method for A1<.sub>E+EA2=-D, IEEE Trans, Auto.Control, 22(1977),467-471.
    [19] H,Flanders and H.K, Wimmei, On the matrix equations AX-XB=C and AX-YB=C,SIAM J,Appl,Math.,32(1977),707-710.
    [20] G.H, Golub,S Nash and C.Van Loan, A Hessenberg-Schur method for the matrix problem AX+XB=C,IEEE Trans.Auto.Control AC 24 (1979),909-913.
    [21] S,P, Bhattacharyya and E, Desouta, Controllability,observability and the solution of AX-XB=C,Linear Algebra Appl.,39 (1981),16 7-188.
    [22] J,R.Magnus, L-structured matrices and linear matrix equations,Linear and Mulfilinear Algebra, 14 (1983),67-88
    [23] B,N, Datta and K, Datta, The matrix equation XA=ATX and an associated algorithm for solving the inertia and stability problems,Linear Algebra Appl.,87(1987),103-119.
    [24] J.H Bevis. F,J. Hall and R.E, Hariwig, The matrix equation Ax-XB=C and its special cases,SIAM J.Matrix Anal,Appl,9(1988),348-359.
    [25] K,Datta,Thematrix equation XA-BX=R and its applications,Linear Algebra Appl.109(1988),91-105.
    [26] 高维新,矩阵方程AX-XB=C的连分式解法,中国科学,A辑,(6) (1988),576-584.
    [27] F, Rotella and P, Borne, Explicit solution of Sylvester and Lyapunov equations, Math, Comput, Simulation, 31(1989),27-1281.
    [28] P.S,Szczepaniak, A contribution to matrix equations arising in system theory, Math,Meth.Appl,Sci.,15 (1992),593-597.
    [29] Guo Zhongheng, Th, Lehmann, Liang Haoyun and C,-S,Man,Twirl tensors and the tensor equation AX-XA=C,T.Elasticity,27 227-245.(1992).
  • 加载中
计量
  • 文章访问数:  2489
  • HTML全文浏览量:  147
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-02-16
  • 刊出日期:  1996-10-15

目录

    /

    返回文章
    返回