不相混流体在多孔介质中置换不稳定现象的三维数值模拟
Three Dimensional Simulation of Unstable Immiscible Displacement in the Porous Medium
-
摘要: 本文采用不连续势函数在待定界面上变化的方法模拟不相混流体在多孔介质中置换.描述流体在多孔介质中的流动的连续方程在三维直角坐标系下被转化为七点式代数方程.采用强隐式法(Stronglyimplict procedure)求解,再确定变动的流体间界面.计算中只模拟从稳定向不稳定置换转化这一过程中界面的变动.计算中考虑了多孔介质的浸润特性、毛细管压力、及多孔介质渗透不均匀性.Abstract: In this study changes of uncontinuous potential functions at the interface wereused to simulate the immiscible displacement in porous media. The elliptic partial differential equation was changed to a seven-pomt molecule form algebraic equation inthree dimensions using the finite difference method. The Strongly implicit procedure was adopted to determine the potential functions at every time instant. Then the change of interface was determmed. The simulation was continued until the displacement changed to unstable state. The effect of capillary pressure, wetting properly, and nonuniformity of permeability were consthered.
-
Key words:
- immiscible fluids /
- interface movement /
- porous medium /
- instability
-
[1] A. E. Scheidegger, On the stability of displacement fronts in porous media f A discussionof the Muskat-Aranofsky Model, Call. J. Phys., 38 (1961), 153-162. [2] P. G. Saffman and F. R. S. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing more viscous liquid, Proc. R. Soc., London Ser A245 (1958),312-329. [3] R. L. Chuoke. The instability of s1ow immiscibleviscous liquid-liquid displacement inpermeable media, Pet. Trans. AIME., 216 (1959), 188. [4] H. D. outmans. Nonlinear theory for frontal stability and viscous fingering in porousmedia, Pey Trans. AIME., 225 (1962), 165. [5] E. D. Chikhliwala and Y. C. Yortsos, Investigations on viscous fingering by linearweakly nonlinear stability analysis, SPE Reser. Eng., (1988), 1268-1277. [6] D. S. Hughes and P. Marphy, Use of monte carlo method to simulate unstable miscibleand immiscible flow through porous media, SPE Reser. Eng. (1988), 1129-1136. [7] D. G. Kirakidis and E. G. Mitsoulis, et al., Linear displacement of a wetting fluid by animmiscible non-wetting fluid in a porous medium: A Predictive Algorithm, The CanadianJ. Chem. Eng., 69 (1991), 557-563. [8] A. J. Degregoria and L. W. Schwartz, A boundary integral method for two phase displacement in Hele-shaw cells, J. Fluid Mech., 164 (1986), 383-400.
计量
- 文章访问数: 1757
- HTML全文浏览量: 156
- PDF下载量: 509
- 被引次数: 0