粘弹性薄板动力响应的边界元方法(Ⅰ)*
Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)
-
摘要: 本文中我们给出了粘弹性薄板动力响应的边界元方法.在Laplace变换区域中,给出了基本解的两种近似方法,运用这些近似基本解建立了边界元方法,再利用改进的Bellman反交换技术,求得问题的解,计算表明该方法具有较高精度和较快收敛性.Abstract: In this paper, a boundary element method for siolving dynamical response of viscoelastic thin plate is given In Laplace domain, we propose two methods to approximate the fundamental solution and develop the corresponding boundary element method Then using the improved Bellman's numerical inversion of the Laplace transform, the solution of the original problem is obtained. The numerical results show that this method has higher accuracy and faster convergence.
-
Key words:
- dynamic response /
- viscoelasticity /
- BEM
-
[1] 孙炳南等,二维粘弹性结构动力响应的边界元方法分析,上海力学,11(1) (1990), [2] 孙炳南等,多相粘弹性结构的动力响应边界元分析,计算结构力学及其应用,7(3) (1990),19-21. [3] 杨挺青等,粘弹性基支粘弹性板轴对称问题的动力响应,力学学报,22(2) (1990). [4] 顾萍等,动力边界元法的正交多项式函数的近似基本解研究,计算结构力学及其应用,1(4),(1990) [5] F. Durbin, Numberical inversion of Laplace transform: An efficient improvement to Dubher and Abate's method, The Computer Journal, 17 (1974), 371~376. [6] M. K. Miller and W. T. Guy, Numerical inversion of the Laplace transform by use ofJacobi polynomials, SIAM J. Nulner. Anal., 3, 4 (1966), 624~635. [7] R. Bellman, R. E. Kalaba and J. Lockett, Numerical Inversion of the Laplace Trans form Amer. Elsevier Publ. Co. (1966). [8] C. A. Brebbia, Boundary Element Techniques: Theory and Applications in Engineering,Springer-Verlag (1984).
计量
- 文章访问数: 2275
- HTML全文浏览量: 112
- PDF下载量: 555
- 被引次数: 0