The Theory of Fractal Interpolated Surface and Its Applications
-
摘要: 本文叙述了分形曲面的生成原理,给出了分形插值曲面的计算公式,证明了分形插值曲面迭代函数系唯一性定理,导出了分形插值曲面的维数定理,并应用实际数据进行了分形插值曲面的实例研究。Abstract: In this paper the principle of construction of a fractal surface is introduced,interpolation functions for a fractal interpolated surface are discussed,the theorem of the uniqueness of an iterated function system of fractal interpolated surface is proved,the theorem of fractal dimension of fractalinterpolated surface is derived,and the case that practical data are used to interpolate fractal surface is studied.
-
[1] M.F.Barnsley and S.G.Demko,Iterated function systems and the global construction of fractals,Proc.of the Royal Soc.London,A39(1986),243-275. [2] M.F.Barnsley,Fractal Every where,Academic Press,Orlando.FL.(1988),172-247. [3] 曾文曲、王向阳等,《分形理论与分形的计算机模拟》,东北大学出版社(1993),74-105. [4] 胡瑞安、胡纪阳、徐树公,《分形的计算机图象及其应用》,中国铁道出版社(1995),61-85. [5] 宋万寿、杨晋吉,一种地表造型方法,小型微型计算机系统,17(3) (1996),32-36. [6] Xie Heping,Fractals in Rock Mechanics,A.A.Balkema Publishers,Netherlands (1993),70-78. [7] B.B.Mandelbrot,The Fractal Geometry of Nature,W.H.Freeman,New York (1982),361-366. [8] J.Feder,Fractals,Plenum Press,New York (1988),212-228. [9] 齐东旭,《分形及其计算机生成》,科学出版社(1994),70-72.
计量
- 文章访问数: 2285
- HTML全文浏览量: 165
- PDF下载量: 1153
- 被引次数: 0