Best Approximation Theorem for Set-Valued Mappings without Convex Values and Continuity
-
Abstract: In this paper,a new concept of weakly convex graph for set-valued mappings is introduced and studied.By using the concept,some new coincidence,the best approximation and fixed point theorems are obtained.
-
Key words:
- best approximation /
- coincidence /
- fixed point /
- topological vector space
-
[1] K.Fan,Extension of two fixed point theorems of F.E.Browder,Math.Z.,112 (1969),234-240. [2] X.P.Ding and K.K.Tan,A set-valued generalization of Fan's best approximation theorem,Can.J.Ma th.,44(4) (1992),783-796. [3] X.P.Ding and E.Tarafdar,Some further generalizations of Ky Fan's best approximation theorem,J.Approx.Theory,81(3) (1995),406-420. [4] F.E.Browder,On a sharpened form of the schauder fixed point theorem,Proc.Nat.Acad.Sci.,USA,7(1977),4749-4751. [5] C.W.Ha,Minimax and fixed point theorem,Math.Ann.,248(1) (1980),73-77. [6] C.W.Ha,On a minimax inequality of Ky Fan,Proc.Amer.Math.Soc.,99(4) (1987),680-682. [7] S.Park,Fixed point theorems on compact convex sets in topological vector spaces,Contemp.Math.,72 (1988),183-191. [8] S.Reich,Approximate selections,best approximations,fixed points and invariant sets,J.Math.Anal.Appl.,62(1) (1978),104-113.
计量
- 文章访问数: 2013
- HTML全文浏览量: 128
- PDF下载量: 645
- 被引次数: 0