Variational Principles of Fluid Full-Filled Elastic Solids
-
摘要: 本文采用变积方法,建立了等温准静态下饱和多孔介质的六类变量的广义变分原理.在此基础上,通过引入约束条件得到各级变分原理,其中包括五类变量,四类变量,三类变量和二类变量的变分原理.除得到文献中已有的变分原理外,本文给出了许多新的变分原理,为建立饱和多孔介质的有限元模型提供了基础.Abstract: The generalized variational principles of isothermal quasi-static fluid full-filled elastic solids are established by using Variational Integral Method. Then by introducing constraints, several kinds of variational principles are worked out, including five-field variable,four-field variable, three-field variable and two-field variable formulations. Some new variational principles are presented besides the principles noted in the previous works. Based on variational principles, finite element models can be set up.
-
[1] Biot M A.General theory of three-dimensional consolidation[J].J Appl Phys,1941,12:155~164 [2] Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid.I Low frequency range[J].J Acout Soc Amer,1956,28:168~178 [3] Ghaboussi J,et al.Discussion on variational formulation of dynamics of fluid-saturated porous solids[J].J Eng Mech Div ASCE,1973,99:1097~1098 [4] Sandhu R S,Pister K S.A Variational principle for boundary value and initial boundary value problems[J].Int J Solids and Structures,1971,7:639~654 [5] Sandhu R S,Pister K S.Dynamics of fluid-saturated soils variational formulation[J].Int J Numer Anal Methos Geomechd,1987,11:241~255 [6] 钱伟长.变分法与有限元[M].北京:科学出版社,1980 [7] 胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981 [8] 梁立孚,石志飞.关于变分学中逆问题的研究[J].应用数学和力学,1994,15(9):775~788 [9] 梁立孚,石志飞.粘性流体力学的变分原理及其广义变分原理[J].应用力学学报,1993,10(1):119~123
计量
- 文章访问数: 2710
- HTML全文浏览量: 163
- PDF下载量: 626
- 被引次数: 0