Explicit Solitary-Wave Solutions to Generalized Pochhammer-Chree Equations
-
摘要: 首先对广义Pochhammer-Chre方程(PC方程)utt-uttxx+ruxxt-(a1u+a2u2+a3u3)xx=0(r≠0)(Ⅰ)的孤波解u(ξ)建立了公式∫-∞+∞[u'(ξ)]2dξ=1/12rv(C+-C-)3[3a3(C++C-)+2a2]。由此推知:广义PC方程(Ⅰ)不可能有钟状孤波解,只可能有扭状孤波解;而广义PC方程utt-uttxx-(a1u+a2u2+a3u3)xx=0(Ⅱ)可能既有钟状孤波解又有渐近值满足3a3(C++C-)+2a2=0的扭状孤波解。进一步求出了广义PC方程(Ⅰ)的扭状孤波解,求出了广义PC方程(Ⅱ)的钟状孤波解和渐近值满足2a3(C++C-)+2a2=0的扭状孤波解。最后给出了广义PC方程utt-uttxx-(a1u+a3u3+a5u5)xx=0(Ⅲ)的显式孤波解。
-
关键词:
- 非线性发展方程 /
- 广义Pochhammer-Chree方程 /
- 孤波解 /
- 精确解
Abstract: For the solitary-wave solution u(ξ)=u(x-vt+ξ0)to the generalized Pochhammer-Chree equation(PC equation) utt-uttxx+ruxxt-(a1u+a2u2+a3u3)xx=0,r,ai=consts(r≠0),(Ⅰ). the formula ∫-∞+∞[u'(ξ)]2dξ=1/12rv(C+-C-)3[3a3(C++C-)+2a2], is established, by which it is shown that the generalized PC equations (Ⅰ) has not bell profile solitary-wave solutions but may have kink profile solitary-wave solutions. However a special generalized PC equation utt-uttxx-(a1u+a2u2+a3u3)xx=0 ai=consts (Ⅱ) may have not only bell profile solitary-wave solutions, but also kink profile solitary wave solutions whose asymptotic values satisfy 3a3(C++C-)+2a2=0. Furthermore all expected solitary-wave so-lutions are given. Finally some explicit bell profile solitary-wave solutions to another generalized PC equation utt-uttxx-(a1u+a3u3+a5u5)xx=0 ai=consts are proposed. -
[1] Bogolubsky I L.Some examples of inelastic so liton interaction[J].Computer Physics Communications,1977,13(2):149~155. [2] Clarkson P A,Le Veque R J,Saxton R.Solitary-wave interactions in elastic rods[J].Studies in Applied Mathematics,1986,75(1):95~122. [3] Saxton R.Existence of solutions for a finite nonlinearly hyperelastic rod[J].J Math Anal Appl,1985,105(1):59~75.
计量
- 文章访问数: 2908
- HTML全文浏览量: 162
- PDF下载量: 882
- 被引次数: 0