Modal Synthesis Method for Norm Computation of H∞ Decentralized Control Systems (Ⅱ)
-
摘要: 在大系统控制中,H∞分散控制方法将整个系统划分成一系列子系统分别研究,然后综合设计大系统的分散控制器,这与结构力学中的子结构分析技术类似.本着这一思想建立了分散H∞控制与子结构振动分析的模拟关系、分散控制系统的最优H∞范数与整体结构一阶本征值之间的对应关系,进而利用结构力学中的模态综合法和扩展Wittrick-Williams算法计算这一参数.论文的第(Ⅰ)部分主要介绍系统H∞控制及其本征函数的正交性和展开定理;第(Ⅱ)部分介绍分散控制系统最优H∞范数计算的模态综合法及数值算例.
-
关键词:
- H∞控制 /
- 分散控制 /
- 模态综合 /
- 广义Rayleigh商 /
- 扩展Wittrick-Williams 算法
Abstract: When using H∞ techniques to design decentralized controllers for large systems,the whole system is divided into subsystems,which are analysed using H∞ control theory before being recombined.An analogy was established with substructural analysis in structural mechanics,in which H∞ decentralized control theory corresponds to substructural modal synthesis theory so that the optimal H∞ norm of the whole system corresponds to the fundamental vibration frequency of the whole structure.Hence,modal synthesis methodology and the extended Wittrick-Williams algorithm were transplanted from structural mechanics to compute the optimal H∞ norm of the control system.The orthogonality and the expansion theorem of eigenfunctions of the subsystems H∞ control are presented in part(Ⅰ) of the paper.The modal synthesis method for computation of the optimal H∞ norm of decentralized control systems and numerical examples are presented in part(Ⅱ). -
[1] 钟万勰, 吴志刚, 高强,等.H∞分散控制系统范数计算的模态综合法(Ⅰ)[J]. 应用数学和力学, 2004,25(2):111—120. [2] Leung A Y T.Dynamic Stiffness & Sub-Structures[M].London: Springer,1993. [3] 王文亮, 杜作润.结构振动与动力子结构分析[M].上海: 复旦大学出版社, 1985. [4] ZHONG Wan-xie, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems[J].Journal of Vibration and Acoustics,Transactions of the ASME,1997,119(3): 334—340. doi: 10.1115/1.2889728 [5] ZHONG Wan-xie, Howson W P, Williams F W. H∞ control state feedback and Rayleigh quotient[J].Computer Methods in Applied Mechanics and Engineering,2001,191(3-5): 489—501. doi: 10.1016/S0045-7825(01)00286-9 [6] Jamshidi M. Large-Scale Systems—Modeling, Control and Fuzzy Logic[M].New Jersey: Prentice-Hall, 1997.
计量
- 文章访问数: 2472
- HTML全文浏览量: 135
- PDF下载量: 606
- 被引次数: 0