The Fractional Dimension Identification Method of Critical Bifurcated Parameters of Bearing-Rotor System
-
摘要: 广泛用于各行各业的转子系统的稳定性问题一直倍受关注.而在当今失稳多是由于一些非线性现象的出现所引起,这就对转子系统的设计提出了更高的要求:考虑非线性因素,避开会出现非线性现象的不稳定参数点或区域.若仅知未知系统的系列时间序列(有可能被噪声污染),如何识别系统运动性态的变化?为了探讨此问题,在本文中通过对一单盘Jeffcott转子的研究,得出了利用随参数变化的时间序列分维数趋势图,可以很好地识别轴承-转子动力系统发生分岔时的临界参数.Abstract: The stable problem of rotor system,seen in many fields,has been cared for more. Nowadays the reasons of most losing stability are caused by nonlinear behaviors.This presents higher requirements to the designing of motor system:considering nonlinear elements,avoiding the unstable parameter points or regions where nonlinear phenomena will be presented.If a family of time series of the unbeknown nonlinear dynamical system can only be got(may be polluted by noise),how to identify the change of motive properties at different parameters?In this paper through the study of Jeffcott rot or system,the result that using the figures between the fractional dimension of time-serial and parameter can be gained,and the critical bifurcated parameters of bearing-rotor dynamical system can be identified.
-
Key words:
- fluid film bearing-rotor system /
- bifurcation /
- fractional dimension
-
[1] 郑会永,刘华强,戴冠中.非线性动力系统中的分形、混沌及其应用[J].非线性动力学学报,1996,3(2):182~190. [2] Barnsley M F.Fractal Everywhere[M].New York:Academic Press Inc,1988. [3] 龚云帆,徐健学.混沌信号与噪声[J].信号处理,1997,13(2):112~118. [4] 龙运佳.混沌振动研究:方向与实践[M].北京:清华大学出版社,1996. [5] 张家忠.挤压油膜阻尼器-滑动轴承-转子动力系统的非线性动力特性研究:运动稳定性及分岔[D].博士论文.西安:西安交通大学,1997. [6] 赵玉成,许庆余.时间序列分维数用于分岔参数的识别[J].西安交通大学学报,1998,32(8):106~107. [7] 刘式达,刘式适.分形和分维引论[M].北京:气象出版社,1992. [8] 郭友中,周焕文.分岔、怪引子、阵发性与混沌[J].力学进展,1984,13(2):255~274. [9] Grassberger P.Generalized dimensions of strange attractors[J].Physics Letters,1983,97A(7):227~230. [10] Grassberger P.On the fractal dimension of the Henon attractor[J].Physics Letters,1983,97A(7):224~227. [11] Parker T S,Chua L.Practical Numerical Algorithms for Chaotic Systems[M].New York:Springer-Verlag,Inc,1992
计量
- 文章访问数: 2496
- HTML全文浏览量: 147
- PDF下载量: 550
- 被引次数: 0