Influence of Couple-Stresses on Stress Concentrations Around the Cavity
-
摘要: 将求解无限弹性平面中孔洞附近应力集中问题的复变函数方法,推广到微极弹性介质的应力集中问题上去,在复平面上给出了二维微极弹性理论应力集中问题的一般解,它可由解析函数与“域函数”构造出来,并利用保角映射的方法来满足非圆孔洞的边界条件。在此基础上建立了求解微极弹性理论中应力集中问题的一般求解方法。最后,对圆形孔洞附近的应力集中系数作了数值计算,并给出了具体结果。Abstract: The complex function method was used in the solution of micropolar elasticity theory around cavity in an infinite elasticity plane. In complex plane, the general solution of two dimension micropolar elasticity theory is given. The solution comes from analytic function and "Zonal Function". The boundary conditions of non-circular cavity are satisfied by using the conformal mapping method. Based on the method, a general approach solving the stress concentration in micropolar elasticity theory is established. Finally, the numerical calculation is carried out to the stress concentration coefficient of circular cavity.
-
[1] Nowacki W.Theory of Asymmetric Elasticity PWN[M].Warszawa,1986. [2] Mindlin R D, Tiersten H F.Influence of couplestress on stress concentration[J].Proceedings of the Society for Experimental Stress Analysis,1963,20(1). [3] 刘殿魁,盖秉政,陶贵源.论孔附近的动应力集中[J].地震工程与工程振动,1980,试刊(1);97-109. [4] Muskhelishvili H H.数学弹性力学的几个基本问题[M].赵惠元译.北京;科学出版社,1958. [5] Savin G N.孔附近的应力集中[M].卢鼎霍译.北京;科学出版社,1958. [6] 王竹溪,郭敦仁.特殊函数概论[M].北京;科学出版社,1979. [7] 爱林根A C.微极场论[M].戴天民译.南京;江苏科学技术出版社,1982.
计量
- 文章访问数: 2240
- HTML全文浏览量: 166
- PDF下载量: 863
- 被引次数: 0