The MLP Method for Subharmonic and Ultraharmonic Resonance Solutions of Strongly Nonlinear Systems
-
摘要: 定义了一个新的参数变换α=α(ε,nω0/m,ω1),扩展了改进的LP方法的应用范围,使该方法能够求强非线性系统的次谐共振解.研究了Duffing方程的1/3亚谐和3次超谐共振解以及Vander Pol-Mathieu方程1/2亚谐共振解,这些例子说明近似解和数值解相当吻合.Abstract: A new parameter transformation α=α(ε,nω0/m,ω1) was defined for extending the applicable range of the modified Lindstedt-Poincar method. It is suitable for determining subharmonic and ultraharmonic resonance solutions of strongly nonlinear systems. The 1/3 subharmonic and 3 ultraharmonic resonance solutions of the Duffing equation and the 1/2 subharmonic resonance solution of the Vander Pol-Mathieu equation were studied. These examples show approximate solutions are in good agreement with numerical solutions.
-
[1] 徐兆.非线性力学中一种新的渐近方法[J].力学学 报,1985,17(3):266-271. [2] Cheung Y K,Chen S H,Lau S L.A modified Lindstedt-Poincaré meth od for certain strongly nonlinear oscillators[J].Int J Non-Linear Mechanic s,1991,26(3,4):367-378. [3] 李骊.强非线性系统的频闪法[J].力学学报,1990,22(4):402-412. [4] Jones S E.Remarks on the perturbation process for certain conservative systems[J].Int J Non~Linear Mechanics,1978,13(1):125-136. [5] Chen S H,Cheung Y K.A modified Lindstedt-Poincaré method for a strongly non-linear two degree of freedom system[J].Journal of Sound and Vibration,1996,193(4):751-762. [6] Chen S H,Cheung Y K.A modified Lindstedt-Poincaré method for a strongly nonlinear system with quadratic and cubic nonlinearities[J].Shock and Vibration,1996,3(4):279-285.
计量
- 文章访问数: 2239
- HTML全文浏览量: 163
- PDF下载量: 670
- 被引次数: 0