留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用拟小波方法数值求解Burgers方程

万德成 韦国伟

万德成, 韦国伟. 用拟小波方法数值求解Burgers方程[J]. 应用数学和力学, 2000, 21(10): 991-1001.
引用本文: 万德成, 韦国伟. 用拟小波方法数值求解Burgers方程[J]. 应用数学和力学, 2000, 21(10): 991-1001.
WAN De-cheng, WEI Guo-wei. The Study of Quasi-Wavelets Based Numerical Method Applied to Burgers’ Equations[J]. Applied Mathematics and Mechanics, 2000, 21(10): 991-1001.
Citation: WAN De-cheng, WEI Guo-wei. The Study of Quasi-Wavelets Based Numerical Method Applied to Burgers’ Equations[J]. Applied Mathematics and Mechanics, 2000, 21(10): 991-1001.

用拟小波方法数值求解Burgers方程

详细信息
    作者简介:

    万德成(1967- ),男,福建福清人,副教授,博士.

  • 中图分类号: O351.2

The Study of Quasi-Wavelets Based Numerical Method Applied to Burgers’ Equations

  • 摘要: 引进了一种拟小波方法数值求解Burgers方程.空间导数用拟小波数值格式离散,时间导数用四阶Runge-Kutta方法离散.计算的雷诺数变化从10到无穷大.拟小波数值方法能很好描述函数的局部快速变化特性.这一点通过对Burgers方程的数值求解以及与其相应解析解的比较中得到证实.
  • [1] Morlet J,Arens G,Fourgeau E,et al.Wave propagation and sampling theory and complex waves[J].Geophysics,1982,47(2):222-236.
    [2] Chui C K.An Introduction to Wavelets[M].San Diego:Academic Press,1992.
    [3] Wickerhauser M V.Adapted Wavelet Analysis From Theory to Software[M].Wellesley,MA:A K Peters,1994.
    [4] Cohen A,Ryan R D.Wavelets and Multiscales Signal Processing[M].London:Chapman & Hall,1995.
    [5] Qian S,Weiss J.Wavelet and the numerical solution of partial differential equations[J].J Comput Phys,1993,106(1):155-175.
    [6] Vasilyev O V,Paolucci S.A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in finite domain[J].J Comput Phys,1996,125(2):498-512.
    [7] 王诚.低雷诺数下N-S方程的积分方程解法——Gaussian小波分析的应用[D].博士论文.上海:上海交通大学,1997.
    [8] Prosser R,Cant R S.On the use of wavelets in computational combustion[J].J Comput Phys,1998,147(2):337-361.
    [9] Haar A.Zer theorie der orthogonalen funktionensysteme[J].Math Annal,1910,69(3):331-371.
    [10] Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Transactions of the American Mathematical Society,1989,315(1):68-87.
    [11] Wei G W,Zhang D S,Kouri D J.Lagrange distributed approximating functionals[J].Phys Rev Lett,1997,79(5):775-779.
    [12] Wei G W,Quasi wavelets and quasi interpolating wavelets[J].Chem Phys Lett,1998,296(3-4):215-222.
    [13] Wei G W.Discrete singular convolution for the Fokker-Planck equation[J].J Chem Phys,1999,110(18):8930-8942.
    [14] Cole J D.On a quasi-linear parabolic equation occurring in aerodynamics[J].Quart Appl Math,1951,9(2):225-236.
    [15] Basdevant C,Deville M,Haldenwang P,et al.Spectral and finite difference solutions of the Burgers equation[J].Comput & Fluids,1986,14(1):23.
  • 加载中
计量
  • 文章访问数:  2345
  • HTML全文浏览量:  80
  • PDF下载量:  856
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-09-06
  • 刊出日期:  2000-10-15

目录

    /

    返回文章
    返回