Direct Integration Methods With Integral Model for Dynamic Systems
-
摘要: 提出了一个求解动力学问题的新方法(DIM-IM).将动力学方程化成积分方程的形式,借助于该方程构造出了具有显式预测-校正的单步、自起动和四阶精度的积分型直接积分算法.理论分析和算例指出,这一方法较中心差分法、Houbolt法、Newmark法和Wilson-θ法都有较高的精度.本方法适用于强非线性,非保守系统.Abstract: A new approach which is a direct integration method with integral model (DIM-IM) to solve dynamic governing equations is presented. The governing equations are integrated into the integral equations. An algorithm with explicit and predict-correct and self-starting and four order accuracy to integrate the integral equations is given. Theoretical analysis and numerical examples show that DIM-IM discribed in this paper suitable for strong non-linear and non-conservative system have higher accuracy than central difference, Houbolt, Newmark and Wilson-Theta methods.
-
Key words:
- numerical integration /
- step-by-step integration /
- non-linear /
- integral equation
-
[1] Bathe Klaus-Jurgen,Wilson Edward L.Numerical Methods in Finite Analysis[M].Englewood Cliffs,New Jersey:Prentice-Hall,Inc,1976. [2] 钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995. [3] 钟万勰.计算结构力学与最优控制[M].大连:大连理工大学出版社,1993. [4] ZHONG Wan-xie,ZHU Jian-ping,ZHONG Xiang-xiang.A precise time integration algorithm for nonlinear systems[A].In:The Third World Congress on Computational Mechanics,Chiba,Japan,1994,Proce of WCCM-3[C].1.5-4-6,Minamidia,Nakano-ku,Tokyo 164,Japan:Tezuka Microfilm Co,Ltd,1994,12-17. [5] 蔡志勤.精细逐步积分及其部分演化[D].博士论文.大连:大连理工大学工程力学系,1998. [6] 孔向东.常微分方程的精细积分法及其在多体系统动力学中的应用[D].博士论文.大连:大连理工大学工程力学系,1998. [7] Nayfeh A H,Moot D T.Nonlinear Oscillations[M].New York:Wiley-Interscience,1979. [8] 刘延柱,陈文良,陈立群,振动力学[M].北京:高等教育出版社,1998.
计量
- 文章访问数: 3108
- HTML全文浏览量: 161
- PDF下载量: 867
- 被引次数: 0