[0,ki]1m-Factorizations Orthogonal to a Subgraph
-
摘要: 设G是一个图,k1,…,km是正整数。若图G的边能分解成m个边不交的 [0,k1]-因子F1,…,[0,km]-因子Fm,则称F={F1,…,Fm}是G的一个[0,ki]1m-因子分解。如果H是G的一个有m条边的子图且对任意的 1≤i≤m有|E(H)∩E(Fi)|=1,则称 F与H正交。证明了若G是一个 [0,k1+… +km-m+1]-图,H是G的一个有m条边的子图,则图G有一个[0,ki]1m-因子分解与H正交。Abstract: Let G be a graph,k1,…,km be positive integers.If the edges of graph G can be decom- posed into some edge disjoint [0,k1]-factor F1…,[0,km]-factor Fm then we can say F={F1,…,Fm},is a [0,ki]1m-factorization of G.If H is a subgraph with m edges in graph G and |E(H)∩E(Fi)|=1 for all 1≤i≤m,then we can call that F is orthogonal to H.It is proved that if G is a[0,k1+… +km-m+1]-graph,H is a subgraph with m edges in G,then graph G has a [0,ki]1m-factorization orthogonal to H.
-
Key words:
- graph /
- factor /
- factorization /
- orthogonal factorization
-
[1] Bondy J A,Murty U S R.Graph Theory with Application[M].London:Macmillan,1976. [2] Akiyama J,Kano M.Factors and factorizations of graphs-a survey[J].Journal of Graph Theory,1985,9(1):1-42. [3] 刘桂真.与星正交的(g,f)-因子分解[J].中国科学(A辑),1995,25(4):367-373. [4] 马润年.与树正交的[0,ki] m1-因子分解[J].西安电子科技大学学报,1996,23(图论专辑):66-69. [5] MA Run-nian,BAI Guo-qiang.On orthogonal[0,ki]m1-factorizations of graphs[J].Acta Mathematica Scientia,1998,18(4):114-118. [6] 高安喜,马润年.图的正交因子分解[J].陕西师范大学学报(自然科学版),1999,22(2):20-22. [7] 马润年,高行山.关于图的(g,f)-因子分解[J].应用数学和力学,1997,18(4):381-386.
计量
- 文章访问数: 1708
- HTML全文浏览量: 65
- PDF下载量: 562
- 被引次数: 0