The Space-Time Finite Element Method for Parabolic Problems
-
摘要: 讨论了一类半线性抛物方程的自适应有限元方法,即空间连续、时间间断的时空有限元方法。利用有限元方法和有限差分方法相结合的技巧,不对时空网格施加限制条件,证明弱解的存在唯一,并且给出了时间最大模、空间L2模,即L∞(L2)模的误差估计,同时给出了数值分析结果,并对理论结果作了验证。Abstract: Adaptive space-time finite element method,continuous in space but discontinuous in time for semi-linear parabolic problems is discussed.The approach is based on a combination of finite element and finite difference techniques.The existence and uniqueness of the weak solution are proved without any assumptions on choice of the space-time meshes.Basic error estimates in L∞(L2)norm,that is maximum-norm in time,L2-norm in space are obtained.The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
-
[1] Eriksson K, Johson C. Adaptive finite element methods for parabolic problems Ⅰ: A linear model problem[J]. SIAM J Numer Anal,1991,28(1):43-77. [2] Eriksson K, Johson C. Adaptive finite element methods for parabolic problems Ⅱ: Optimal error estimates in L∞L2 and L∞L∞[J]. SIAM J Numer Anal,1995,32(3):706-740. [3] Eriksson K, Johson C. Adaptive finite element methods for parabolic problems Ⅳ: A nonlinear problem[J]. SIAM J Numer Anal,1995,32 (3):1729-1749. [4] Makridakis CH G, Babuska I. On the stability of the discontinuous Galerkin method for the heat equation[J]. SIAM J Numer Anal,1997,3 4(1):389-401. [5] Kabakashian C, Makridakis C. A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method[J]. Math Comput,1998,97(222):479-499. [6] Brenner S C, Scoot L R. The Mathematical Theory of Finite Element Method[M]. New York: Springer-Verlag,1994. [7] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland,1978.
计量
- 文章访问数: 2506
- HTML全文浏览量: 213
- PDF下载量: 901
- 被引次数: 0