留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两自由度非对称三次系统非线性模态的奇异性质

徐鉴 陆启韶 黄克累

徐鉴, 陆启韶, 黄克累. 两自由度非对称三次系统非线性模态的奇异性质[J]. 应用数学和力学, 2001, 22(8): 869-878.
引用本文: 徐鉴, 陆启韶, 黄克累. 两自由度非对称三次系统非线性模态的奇异性质[J]. 应用数学和力学, 2001, 22(8): 869-878.
XU Jian, LU Qi-shao, HUANG Ke-lei. Singular Characteristics of Nonlinear Normal Modes in a Two Degrees of Freedom Asymmetric System With Cubic Nonlinearities[J]. Applied Mathematics and Mechanics, 2001, 22(8): 869-878.
Citation: XU Jian, LU Qi-shao, HUANG Ke-lei. Singular Characteristics of Nonlinear Normal Modes in a Two Degrees of Freedom Asymmetric System With Cubic Nonlinearities[J]. Applied Mathematics and Mechanics, 2001, 22(8): 869-878.

两自由度非对称三次系统非线性模态的奇异性质

基金项目: 国家自然科学基金资助项目(10072039);国家自然科学基金重大项目资助课题(19990510)
详细信息
    作者简介:

    徐鉴(1961),男,浙江余姚人,教授,博士.

  • 中图分类号: O322

Singular Characteristics of Nonlinear Normal Modes in a Two Degrees of Freedom Asymmetric System With Cubic Nonlinearities

  • 摘要: 利用非线性模态子空间的不变性和摄动技术,研究两自由度非对称三次系统在奇异条件下系统的性质.重点考虑子系统之间线性耦合退化时的奇异性质.对于非共振情形,所得到的解析结果表明,系统出现单模态运动以及振动局部化现象,这种现象的强弱不但与非线性耦合刚度有关,而且与非对称参数有关.并解析地得到了参数的门槛值;对于1:1共振情形,模态随非线性耦合刚度和非对称参数的变化会出现分岔,得到了参数分岔集以及模态的分岔曲线.
  • [1] Guchenheimer J,Holmes P.Nonlinear Oscillation,Dynam ical System and Bifurcation of VectorFields[M].New York:Springer-Verlag,1983.
    [2] 陆启韶.分岔和奇异性[M].上海:上海科学技术出版社,1995.
    [3] Nayfeh A H,Mook D T.Nonlinear Oscillation s[M].New York:John Wiley & Sons Inc,1979.
    [4] Winggins S.In str oduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1990.
    [5] Chen Y S,Langford W F.The subharmonic bifurcation solution of nonlinear Mathieus equation and Euler dynamically buckling problem[J].Acta Mech Sinica,1998,19(3):522-532.
    [6] Iooss G,Joseph D D.Elementary Stability and Bifurcation Theory[M].New York:Springer-Ver-lag,1980.
    [7] Shaw S W,Pierre C.Normal modes for nonlinear vibration systems[J].Journal of Sound and Vibration,1993,164(1):85-124.
    [8] 徐鉴,陆启韶,黄克累.两自由度非对称三次系统非奇异时的非线性模态及叠加性[J].应用数学和力学,1998,19(12):1077-1086.
    [9] Anderson P W.Absence of diffusion in certain random lattices[J].Phsical Review,1958,109(12):1492-1505.
    [10] Hodges C H.Confinement of vibration by structural chains[J].Journal of Sound and Vibration,1982,82(2):411-424.
    [11] Pierre C,Dowell E H.Localization of vibration by structural irregularity[J].Journal of Sound and Vibration,1987,114(3):549-564.
    [12] Pierre C.Model localization and eigenvalue lociveering phenomena in disordered structures[J].Journal of Sound and Vibration,1988,126(3):485-502.
    [13] Pierre C.Weak and strong vibration localization in disordered structures:a statistical investigation[J].Journal of Sound and Vibration,1990,139(1):111-132.
    [14] 陈予恕.非线性振动[M].天津:天津科学技术出版社,1983.
    [15] Golubisky M,Stewart I,Schaeffer D G.Singularities and Groups in Bifurcation Theory[M].Voland Vol.New York:Springer-Verlag,1988.
    [16] Caughey T K,Vakakis A,Sivo J M.Analytical study of similar normal modes and their bifurcationsin class of strongly non-linear systems[J].Int J Non-Linear Mechanics,1990,25(5):521-533.
  • 加载中
计量
  • 文章访问数:  2368
  • HTML全文浏览量:  150
  • PDF下载量:  588
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-09-27
  • 修回日期:  2001-03-20
  • 刊出日期:  2001-08-15

目录

    /

    返回文章
    返回