1:2 Internal Resonance of Coupled Dynamic System With Quadratic and Cubic Nonlinearities
-
摘要: 对一类具有平方、立方非线性项的耦合动力学系统1:2内共振情形进行了研究.首先,用直接方法求出该系统1:2内共振时的Normal Form,该系统的Normal Form中,不仅含有平方非线性项,同时还含有立方非线性项.通过采用适当的变量变换,将4维分岔方程约化成3维,进而得到单变量4次分岔方程.最后用奇异性理论,研究了一类普适开折的分岔特性.该方法可用于4维中心流形上流的强内共振时的分岔行为分析.
-
关键词:
- 平方立方非线性 /
- NormalForm /
- 1:2内共振分岔
Abstract: The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied.The normal forms of this system in 1:2 internal resonance were derived by using the direct method of normal form.In the normal forms,quadratic and cubic nonlinearities were remained.Based on a new convenient transformation technique,the 4-dimension bifurcation equations were reduced to 3-dimension.A bifurcation equation with one-dimension was obtained.Then the bi furcation behaviors of a universal unfolding were studied by using the singularity theory.The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.-
Key words:
- quadratic and cubic nonlinearities /
- Normal Form /
- 1:2 internal resonance
-
[1] Nayfeb A H,Mook D T.Nonlinear Oscillations[M].New York:John Wiley & Sons,1979. [2] Langford W F,Zhan K,Dynamics of 1/1 resonance in vortex-induced vibration[A].In:M P Paidoussis Ed.ASME Fundmental Aspects of Fluid Structure Interactions[C].PVP-Vol.247,Book,No G00728-1992. [3] Leblanc V G,Langford W F.Classification and unfoldings of 1:2 resonant Hopf bifurcation[J].Arch Rational Mech Anal,1996,(136):305-357. [4] 吴志强.多自由度非线性系统的非线性模态及Normal Form直接方法[D].博士论文,天津:天津大学,1996. [5] 陈芳启,吴志强,陈予恕.一类粘弹性圆柱壳的高余维分岔[J].力学学报,2001,33(3):286-293. [6] 陈予恕,杨彩霞.一类刚柔耦合非线性系统的动力学建模[J].中国空间科学技术,2000(3):712. [7] CHEN Yu-shu,Leung A Y T.Bifurcation and Chaos in Engineering[M].London:Springer-Verlag,1998. [8] 陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995. [9] 陈予恕.非线性振动系统的分岔和混沌理论[M].北京:高等教育出版社,1993. [10] 陆启韶.常微分方程定性理论与几何方法[M].北京:北京航空航天大学出版社,1988. [11] Arnold V I.Geometrical Methods in the Theory of Or dinary Differential Equations[M].2nd ed.New York:Springer-Verlag,1988. [12] Golubitsky M,Schaeffer D G.Singularities and Bifurcation Theory,Vol.1[M].New York:Springer-Verlag,1985. [13] Chow S N,Hale S.Methods of Bifur cation Theory[M].New York:Springer-Verlag,1992.
计量
- 文章访问数: 2562
- HTML全文浏览量: 162
- PDF下载量: 652
- 被引次数: 0