留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀材料细观结构的定向分布函数(Ⅱ)——晶体分布函数和各种材料对称性约束下的不可约张量

郑泉水 傅依斌

郑泉水, 傅依斌. 非均匀材料细观结构的定向分布函数(Ⅱ)——晶体分布函数和各种材料对称性约束下的不可约张量[J]. 应用数学和力学, 2001, 22(8): 790-805.
引用本文: 郑泉水, 傅依斌. 非均匀材料细观结构的定向分布函数(Ⅱ)——晶体分布函数和各种材料对称性约束下的不可约张量[J]. 应用数学和力学, 2001, 22(8): 790-805.
ZHENG Quan-shui, FU Yi-bin. Orientation Distribution Functions for Microstructures of Heterogeneous Materials(Ⅱ)-Crystal Distribution Functions and Irreducible Tensors Restricted by Various Material Symmetries[J]. Applied Mathematics and Mechanics, 2001, 22(8): 790-805.
Citation: ZHENG Quan-shui, FU Yi-bin. Orientation Distribution Functions for Microstructures of Heterogeneous Materials(Ⅱ)-Crystal Distribution Functions and Irreducible Tensors Restricted by Various Material Symmetries[J]. Applied Mathematics and Mechanics, 2001, 22(8): 790-805.

非均匀材料细观结构的定向分布函数(Ⅱ)——晶体分布函数和各种材料对称性约束下的不可约张量

基金项目: 国家自然科学基金资助项目(19525207;19891180);霍英东教育基金资助项目
详细信息
    作者简介:

    郑泉水(1961- ),男,江西人,教授,博士,教育部长江特聘教授.

  • 中图分类号: O331

Orientation Distribution Functions for Microstructures of Heterogeneous Materials(Ⅱ)-Crystal Distribution Functions and Irreducible Tensors Restricted by Various Material Symmetries

  • 摘要: 目的是建立三维晶体定向分布函数(CODF)的张量傅立叶展开的显式表示.与三维ODF的傅立叶展开的第m项系数仅对应单个m阶对称无迹张量不同,三维CODF的傅立叶展开的第m项系数一般由2m+1个m阶对称无迹张量组成.随后还建立了在各种宏观和微观对称性下三维CODF的张量傅立叶展开的约束形式,表明大多数对称性下的约束形式中的m阶不可约张量数目明显少于2m+1.这些结果是通过对各种点群对称性约束下二维和三维不可约张量的约束形式的研究得到的.
  • [1] Molinari A,Canova G R,Ahzi S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metall Mater,1987,35(12):2983-2994.
    [2] Harren S V,Asaro R J.Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J].J Mech Phys Solids,1989,37(2):191-232.
    [3] Adams B L,Field D P.A statistical theory of creep in polycrystalline materials[J].Acta Metall Mater,1991,39(10):2405-2417.
    [4] Adams B L,Boehler J P,Guidi M,et al.Group theory and representation of microstructure and mechanical behaviour of polycrystals[J].J Mech Phys Solids,1992,40(4):723-737.
    [5] Molinari A,Canova G R,Ahzi S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metall Mater,1987,35(12):2983-2994.
    [6] Harren S V,Asaro R J.Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J].J Mech Phys Solids,1989,37(2):191-232.
    [7] Adams B L,Field D P.A statistical theory of creep in polycrystalline materials[J].Acta Metall Mater,1991,39(10):2405-2417.
    [8] Adams B L,Boehler J P,Guidi M,et al.Group theory and representation of microstructure and mechanical behaviour of polycrystals[J].J Mech Phys Solids,1992,40(4):723-737.
    [9] Hahn T.Space-Group Symmetry[M].In:International Tables for Cry stallography,Vol.A,2nd Ed.Dordrecht:D Reidel.1987.
    [10] Zheng Q S.Theory of representations for tensor functions:A unified invariant approach to constitutive equations[J].Appl Mech Rew,1994,47(11):554)587.
    [11] Barut A O,Raczka R.Theory of Group Repr esentations and Applications[M].2nd Ed.Warsza-wa:Polish Scientific Publishers,1980.
    [12] BrLcker T,Tom Dieck T.Representations of Compact Lie Groups[M].New York:Springer-Ver-lag,1985.
    [13] Murnagham F D.The Theory of Group Representations[M].Baltimore,MD:Johns Hopkins Univ Press,1938.
    [14] Zheng Q S,Spencer A J M.On the canonical representations for Kronecker powers of orthogonal tensors with applications to material symmetry problems[J].Int J Engng Sci,1993,31(4):617-635.
    [15] Korn G A,Korn T M.Ma them atical Handbook for Scientists and Engineers[M].2nd Ed.NewYork:McGraw-Hill,1968.
    [16] Eringen A C.Mechanics of Continua[M].2nd Ed.New York:Wiley,1980.
    [17] Zhang J M,Rychlewski J.Structural tensors for anisotropic solids[J].Arch Mech,1990,42:267-277.
    [18] Zheng Q S,Boehler J P.The description,classification,and reality of material and physical symme-tries[J].Acta Mech,1994,102(1-4):73-89.
    [19] Smith G F,Smith M M,Rivlin R S.Integrity bases for a symmetric tensor and avector-the crystalclasses[J].Arch Ratl Mech Anal,1963,12(1):93-133.
    [20] Smith G F.Con stitutive Equations for Anisotropic and Isotropic Materials[M].Amsterdam:North-Holland,1994.
    [21] Spencer A J M.A note on the decomposition of tensors into traceless symmetric tensors[J].Int J Engng Sci,1970,8(8):475-481.
    [22] Hannabuss K C.The irreducible components of homogeneous functions and symmetric tensors[J].J Inst Maths Applics,1974,14(11):83-88.
  • 加载中
计量
  • 文章访问数:  2814
  • HTML全文浏览量:  158
  • PDF下载量:  757
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-10-09
  • 修回日期:  2001-03-20
  • 刊出日期:  2001-08-15

目录

    /

    返回文章
    返回