| [1] | Molinari A,Canova G R,Ahzi S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metall Mater,1987,35(12):2983-2994. | 
		
				| [2] | Harren S V,Asaro R J.Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J].J Mech Phys Solids,1989,37(2):191-232. | 
		
				| [3] | Adams B L,Field D P.A statistical theory of creep in polycrystalline materials[J].Acta Metall Mater,1991,39(10):2405-2417. | 
		
				| [4] | Adams B L,Boehler J P,Guidi M,et al.Group theory and representation of microstructure and mechanical behaviour of polycrystals[J].J Mech Phys Solids,1992,40(4):723-737. | 
		
				| [5] | Molinari A,Canova G R,Ahzi S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metall Mater,1987,35(12):2983-2994. | 
		
				| [6] | Harren S V,Asaro R J.Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J].J Mech Phys Solids,1989,37(2):191-232. | 
		
				| [7] | Adams B L,Field D P.A statistical theory of creep in polycrystalline materials[J].Acta Metall Mater,1991,39(10):2405-2417. | 
		
				| [8] | Adams B L,Boehler J P,Guidi M,et al.Group theory and representation of microstructure and mechanical behaviour of polycrystals[J].J Mech Phys Solids,1992,40(4):723-737. | 
		
				| [9] | Hahn T.Space-Group Symmetry[M].In:International Tables for Cry stallography,Vol.A,2nd Ed.Dordrecht:D Reidel.1987. | 
		
				| [10] | Zheng Q S.Theory of representations for tensor functions:A unified invariant approach to constitutive equations[J].Appl Mech Rew,1994,47(11):554)587. | 
		
				| [11] | Barut A O,Raczka R.Theory of Group Repr esentations and Applications[M].2nd Ed.Warsza-wa:Polish Scientific Publishers,1980. | 
		
				| [12] | BrLcker T,Tom Dieck T.Representations of Compact Lie Groups[M].New York:Springer-Ver-lag,1985. | 
		
				| [13] | Murnagham F D.The Theory of Group Representations[M].Baltimore,MD:Johns Hopkins Univ Press,1938. | 
		
				| [14] | Zheng Q S,Spencer A J M.On the canonical representations for Kronecker powers of orthogonal tensors with applications to material symmetry problems[J].Int J Engng Sci,1993,31(4):617-635. | 
		
				| [15] | Korn G A,Korn T M.Ma them atical Handbook for Scientists and Engineers[M].2nd Ed.NewYork:McGraw-Hill,1968. | 
		
				| [16] | Eringen A C.Mechanics of Continua[M].2nd Ed.New York:Wiley,1980. | 
		
				| [17] | Zhang J M,Rychlewski J.Structural tensors for anisotropic solids[J].Arch Mech,1990,42:267-277. | 
		
				| [18] | Zheng Q S,Boehler J P.The description,classification,and reality of material and physical symme-tries[J].Acta Mech,1994,102(1-4):73-89. | 
		
				| [19] | Smith G F,Smith M M,Rivlin R S.Integrity bases for a symmetric tensor and avector-the crystalclasses[J].Arch Ratl Mech Anal,1963,12(1):93-133. | 
		
				| [20] | Smith G F.Con stitutive Equations for Anisotropic and Isotropic Materials[M].Amsterdam:North-Holland,1994. | 
		
				| [21] | Spencer A J M.A note on the decomposition of tensors into traceless symmetric tensors[J].Int J Engng Sci,1970,8(8):475-481. | 
		
				| [22] | Hannabuss K C.The irreducible components of homogeneous functions and symmetric tensors[J].J Inst Maths Applics,1974,14(11):83-88. |