Computation Formulas of Generalised Inverse Padé Approximant Using for Solution of Integral Equations
-
摘要: 首次建立了广义逆函数值Pad啨逼近的完整的计算公式:函数值分子多项式和数量分母多项式的行列式公式。一个有用的存在条件借助于行列式形式得以给出。Abstract: For the generalizedinverse function-valued Pad approximants, its intact computation formulas are given, The explicit determinantal formulas for the denominator scalar polynomials and the numrator function-valued polynomials are first established. A useful existence condition is given by means of determinant form.
-
Key words:
- Pad approximant /
- determinantal formula /
- existence /
- integral equation
-
[1] Graves-Morris P R. Solution of integral equations using generalised inverse, function-valued Padé approximants[J]. J Comput Appl Math,1990,32(1):117-124. [2] Chisholm J S R. Solution of integral equations using Padé approximants[J]. J Math Phys,1963,4(12):1506-1510. [3] Graves-Morris P R, Jenkins C D. Vector valued rational interpolants Ⅲ[J]. Constr Approx,1986,2(2):263-289. [4] 顾传青. 基于广义逆的矩阵值Padé逼近[J]. 计算数学,1997,19(1):19-28. [5] GU Chuan-qing. Thiele-type and Largrange-type generalized inverse rational interpolation for rectangular complex matrices[J]. Linear Algebra Appl,1999,295(1):7-30. [6] Baker G A. The Numerical Treatment of Integral Equations[M]. Oxford: Oxford Univ, Press,1978. [7] Sloan I H. Improvement by iteration for compact operator equations[J]. Math Comp,1976,30(4):758-764.
计量
- 文章访问数: 2193
- HTML全文浏览量: 109
- PDF下载量: 843
- 被引次数: 0