Chaos in Perturbed Planan Non-Hamiltonian Integrable Systems with Slowly-Varying Angle Parameters
-
摘要: 将Melinikov方法推广到带慢变角参数摄动平面可积系统。基于对未受摄动系统几何结构的分析,建立了横截同宿条件。借助常微分方程组解对参数的可微性定理,得到系统的广义Melnikov函数,其简单零点意味着系统可能出现混沌。
-
关键词:
- Melinikov方法 /
- 摄动可积系统 /
- 横截同宿 /
- 混沌
Abstract: The Melnikov method was extended to perturbed planan non-Hamiltonian integrable systems with slowly-varying angle parameters.Based on the analysis of the geometric structure of unperturbed systems,the condition of transversely homoclinic intersection was established.The generalized Melnikov function of the perturbed system was presented by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.Chaos may occur in the system if the generalized Melnikov function has simple zeros.-
Key words:
- Melnikov method /
- perturbed integrable system /
- transversely homoclinic /
- chaos
-
[1] 刘曾荣. 混沌研究中Melnikov的方法[A]. 见:郭仲衡编. 近代数学和力学[C]. 北京: 北京大学出版社,1987,269-290. [2] Wiggins S. Global Bifurcations and Chaos[M]. Berlin: Springer-Verlag,1988. [3] Holmes P J. Averaging and chaotic motions in forced oscillations[J]. SIAM J Appl Math,1980,38(1):65-80;1980,40(1):167-168. [4] 蒋继发,刘曾荣. 非Hamilton系统的次谐分叉和马蹄[J]. 应用数学学报,1987,10(4):504-508. [5] 陈立群,刘延柱. 准周期摄动平面非Hamilton可积系统中的混沌[J]. 上海交通大学学报,1996,30(11):28-31. [6] 陈立群. 科学中混沌概念的演化[J]. 自然杂志,1991,14(7):619-624. [7] Wiggins S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems[M]. Berlin: Springer-Verlag,1994. [8] Hale J. Ordinary Differential Equations[M]. London: Robert E Krieger,1980.
计量
- 文章访问数: 2335
- HTML全文浏览量: 113
- PDF下载量: 577
- 被引次数: 0