On the Stability Boundary of Hamiltonian Systems
-
摘要: 通过采用摄动法对线性哈密顿参数系统的特征值和特征向量进行灵敏度分析,给出了此类系统的稳定性边界的判据,结果表明:具有约当链的系统重特征根对系统的稳定性起至关重要的作用。Abstract: The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.
-
Key words:
- stability boundary /
- Hamiltonian system /
- sensitivity analysis /
- perturbation method
-
[1] Vishik M I,Lyusternik L A.Solution of some perturbation problems in the case of matrices and selfadjoint or non-self-adjoint equations[J].Russian Mathematical Surveys,1960,15(3):1-73. [2] Lancaster P.On eigenvalues of matrices depending on a parameter[J].Numer Math,1964,10(4):377-387. [3] Sun J G.Eigenvalues and eigenvectors of a matrix dependent on a parameter[J].J Comput Math,1985,3(3):351-364. [4] Anord V L.Geometrical Methods in the Theory of Ordinary Differential Equations[M].New York:Springer-Verlag,1983. [5] Seyranian A P.Sensitivity analysis of multiple eigenvalues[J].Mech Struct & Mach,1993,21(2):261-284. [6] Pedersen P,Seyranian A P.Sensitivity analysis of problems of dynamic stability[J].Int J Solids Structures,1983,19(4):315-335. [7] Yakubovitch V A,Strzhinskii V M.Parametric Resonance in Linear Systems[M].Moscow:Nauka,1987.
计量
- 文章访问数: 2428
- HTML全文浏览量: 95
- PDF下载量: 883
- 被引次数: 0