One-Dimensional Cellular Automaton Model of Traffic Flow Based on Car-Following Idea
-
摘要: 提出一个改进的一维元胞自动机模型来模拟周期性边界条件下高速公路上车流运动.基于跟车模型的思想,根据所研究车辆与其前方紧邻车辆之间的间距和相对速度来确定该车的运动,间接地反映了次近邻车辆的影响.通过引入安全间距来描述高速运动车辆接近前方缓行车辆时的减速行为,并利用随机减速概率来反映减速行为中的随机因素.由于安全间距的引入,当减速概率大于零时在较高密度下就出现完全的阻塞相.同时在本模型中采用的是有条件减速,因而可以较好描述交通实测中观察到的现象.在临界密度附近,车流运动处于亚稳态并呈现出滞后现象.由于本模型对于车辆微观运动的合理描述,可以直接用以研究在交通灯控制下城市道路交通中的各种现象.Abstract: An improved one-dimensional CA traffic model was proposed to describe the highway traffic under the periodic boundary conditions. This model was based on the idea of the car-following model, which claims that the motion of a vehicle at one time step depends on both the its headway and the synchronous motion of the front vehicle, thus including indirectly the influence of its subneighboring vehicle. In addition, the so-called safety distance was introduced to consider the deceleration behavior of vehicles and the stochastic factor was taken into account by introducing the deceleration probability. Meanwhile, the conditional deceleration in the model gives a better description of the phenomena observed on highways. It is found that there exists the metastability and hysteresis effect of traffic flow in the neighborhood of critical density under different initial conditions. Since this model gives a reasonable depiction of the motion of a single vehicle, it is easy to be extended to the case of traffic flow under the control of traffic lights in cities.
-
Key words:
- cellular automaton (CA) /
- traffic model /
- metastability /
- hysteresis phenomenon /
- carfollowing model
-
[1] Nagel K,Schreckenberg M.A cellular automaton model for freeway traffic[J].J Phys Ⅰ France,1992,2:2221-2229. [2] Fukui M,Ishibashi Y.Traffic flow in 1D cellular automaton model including cars moving with high speed[J].J Phys Soc Japan,1996,65(6):1868-1870. [3] 王雷.一维交通流元胞自动机模型中自组织临界性及相变行为的研究[D].博士学位论文.合肥:中国科学技术大学,2000. [4] 胡永涛.改进的元胞自动机模型及其应用[D].硕士学位论文,上海:上海大学,1999. [5] 薛郁,董力耘,戴世强.一种改进的一维元胞自动机交通流模型及减速概率的影响[J].物理学报,2001,50(3):445-449. [6] Chowdhury D,Santen L,Schadschneider A.Statistical physics of vehicular traffic and some related systems[J].Physics Report,2000,329:199-329. [7] Helbing D,Schreckenberg M.Cellular automata simulating experimental properties of traffic flow[J].Phys Rev E,1999,59(3):R2505-R2508. [8] Krauss S,Wagner P,Gawron C.Metastable states in a microscopic model of traffic flow[J].Phys Rev E,1997,55(4):5597-5602. [9] Lübeck S,Schreckenberg M,Usadel K D.Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow[J].Phys Rev E,1998,57(1):1171-1174. [10] Nagel K,Paczuski M.Emergent traffic jams[J].Phys Rev E,1995,51(4):2909-2918.
计量
- 文章访问数: 2552
- HTML全文浏览量: 148
- PDF下载量: 1075
- 被引次数: 0