The Properties of a Kind of Random Symplectic Matricess
-
摘要: 对A.Bunse-Gerstner和V.Mehrmann使用的一种随机辛阵的性质进行了研究.证明了1)其可以通过正交相似变换化为一种特殊的Schur标准型;2)其条件数为一常数;3)该常数约为2618.Abstract: Several important properties of a kind of random symplectic matrix used by A.Bunse-Gerstner and V.Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by orthogonal similar transformation.2) Its condition unmber is a constant.3) The condition unmber of it is about 2.618.
-
Key words:
- symplectic matrix /
- QR-like algorithm /
- eigenvalue /
- condition number /
- Jordan canonical form /
- Schur canonical form
-
[1] Benner P,Farbender H.The symplectic eigenvalue problem,the butterfly form,the SR algorithm,and the Lanczos method[J].Linear Alg Appl,1998,19(47):275-276. [2] Bunse-Gerstner A.Mehrmann V.A symplectic QR-like Algorithm for the solution of the real algebraic Riccati equation[J].IEEE Trans Automat Contr,1986,AC-31:1104-1113. [3] Benner P,Mehrmann V,Xu H.A numerically stable,structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils[J].Numer Math,1998,78:329-358. [4] Jacob B.Linear Algebra[M].New York:W H Freeman and Company,1990. [5] Saad Y.Numerical Methods for Large Eigenvalue Problems[M].M13 9PL,Manchester,UK:Manchester University Press,1992. [6] Golub G H,Van Loan C.Matrix Computations[M].Third Edition.The Johns Hopkins University Press,1996. [7] Van Loan C.A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[J].Linear Algebra Appl,1984,16:233-251.
计量
- 文章访问数: 2244
- HTML全文浏览量: 148
- PDF下载量: 683
- 被引次数: 0