留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计算Hamilton矩阵特征值的一个稳定的有效的保结构的算法

闫庆友 熊西文

闫庆友, 熊西文. 计算Hamilton矩阵特征值的一个稳定的有效的保结构的算法[J]. 应用数学和力学, 2002, 23(11): 1150-1168.
引用本文: 闫庆友, 熊西文. 计算Hamilton矩阵特征值的一个稳定的有效的保结构的算法[J]. 应用数学和力学, 2002, 23(11): 1150-1168.
YAN Qing-you, XIONG Xi-wen. An Effcient and Stable Structure Preserving Algorithm for Computing the Eigenvalues of a Hamiltonian Matrix[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1150-1168.
Citation: YAN Qing-you, XIONG Xi-wen. An Effcient and Stable Structure Preserving Algorithm for Computing the Eigenvalues of a Hamiltonian Matrix[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1150-1168.

计算Hamilton矩阵特征值的一个稳定的有效的保结构的算法

基金项目: 国家重点基础研究项目(G1999032805);博士点科研基金资助项目;教育部优秀年轻教师基金资助项目
详细信息
    作者简介:

    闫庆友(1963- ),男,山东茌平人,副教授,博士(E-mail:yanqingyou@263.net).

  • 中图分类号: O241.6

An Effcient and Stable Structure Preserving Algorithm for Computing the Eigenvalues of a Hamiltonian Matrix

  • 摘要: 提出了一个稳定的有效的保结构的计算Hamilton矩阵特征值和特征不变子空间的算法,该算法是由SR算法改进变形而得到的。在该算法中,提出了两个策略,一个叫做消失稳策略,另一个称为预处理技术。在消失稳策略中,通过求解减比方程和回溯彻底克服了Bunser Gerstner和Mehrmann提出的SR算法的严重失稳和中断现象的发生,两种策略的实施的代价都非常低。数值算例展示了该算法比其它求解Hamilton矩阵特征问题的算法更有效和可靠。
  • [1] Byers R. A Hamiltonian QR-algirithm[J]. SIAM J Sci Statist Comput,1986,7:212-229.
    [2] Bunse Gerstner A, Byers R, Mehrmann V. A chat of numerical methods for structured eigenvalue problems[J]. SIAM J Matrix Anal Appl,1992,13:419-453.
    [3] Bunse-Gerstner A, Mehrmann V. A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation[J]. IEEE Trans Automat Control,1986,31:1104-1113.
    [4] Hench J J, Laub A J. Numerical solution of the discrete-time periadic Riccati equation[J]. IEEE Trans Automat Control,1994,39:1197-1210.
    [5] Lin W W. A new method for computing the closed loop eigenvalues of a discrete-time algebraic Riccati equation[J]. Linear Algebra Appl,1987,96:157-180.
    [6] Lu L Z, Lin W W. An iterative algorithm for the solution of a discrete-time algebraic Riccati equation[J]. Linear Algebra Appl,1993,188/189:465-488.
    [7] Lin W W, Wang C. On computing stable Lagrangian subspaces of Hamiltonian martices and symplectic pencils[J]. SIAM J Matrix Anal Appl,1997,18:590-614.
    [8] Pappas C, Laub A J, Sandell N R. On the numerical solution of the discrete-time algebraic Reiccati equation[J]. IEEE Trans Autom Control,1980,25:631-641.
    [9] Patel R V. On computing the eigenvalues of a symplectic pencils[J]. Linear Algebra Appl,1993,188:591-611.
    [10] Patel R V, Lin Z, Misra P. Computation of stable invariant subspaces of Hamiltonian matrices[J]. SIAM J Matrix Anal Appl,1994,15:284-298.
    [11] Benner P, Mehrmann V, Xu H. A numerically stable, structure preserving method for computing the eigenvalues oy real Hamiltonian or symplectic pencils[J]. Numer Math,1998,78:329-358.
    [12] Bunse Gerstner A, Mehrmann V, Watkins D. An SR algorithm for Hamiltonian matrices, based on Gaussian elimination[J]. Methods Oper Res,1989,58:339-358.
    [13] Mehrmann V. A symplectic orthogonal method for single input or single output discrete time optimal quadrtic control problems[J]. SIAM J Matrix Anal Appl,1988,9:221-247.
    [14] Van Loan C. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[J]. Linear Algebra Appl,1984,16:233-251.
    [15] 许波,刘征. Matab工程数学应用[M]. 北京:清华大学出版社,2000.
    [16] Golub G H, Van Loan C. Matrix Computations[M]. Baltimore: The Johns Hopkins University Press,1996.
    [17] Stewart G W. Introduction to Matrix Computations[M]. New York: Academic,1973.
    [18] Wilkinson J H. The Algebraic Eigenvalue Problem[M]. Clarendon: Oxford,1965.
    [19] Benner P, Fabender H. An implicity restarted symplectic lanczos method for the Hamiltonian eigenvalue problem[J]. Linear Algebra Appl,1997,263:75-111.
  • 加载中
计量
  • 文章访问数:  2868
  • HTML全文浏览量:  193
  • PDF下载量:  1482
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-02-27
  • 修回日期:  2002-06-28
  • 刊出日期:  2002-11-15

目录

    /

    返回文章
    返回