留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂交应力元的应力子空间和柔度矩阵H对角化方法

张灿辉 冯伟 黄黔

张灿辉, 冯伟, 黄黔. 杂交应力元的应力子空间和柔度矩阵H对角化方法[J]. 应用数学和力学, 2002, 23(11): 1124-1132.
引用本文: 张灿辉, 冯伟, 黄黔. 杂交应力元的应力子空间和柔度矩阵H对角化方法[J]. 应用数学和力学, 2002, 23(11): 1124-1132.
ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.
Citation: ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.

杂交应力元的应力子空间和柔度矩阵H对角化方法

基金项目: 教育部留学回国人员资助基金资助项目;教育部高等学校骨干教师计划基金资助项目;上海市教育基金会"曙光计划"的资助项目(99SG38)
详细信息
    作者简介:

    张灿辉(1967- ),男,福建惠安人,博士(E-mail:oudeezhang@sohu.com).

  • 中图分类号: O242.21

The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H

  • 摘要: 证明了:1)杂交元假设应力模式线性无关是柔度矩阵非奇异的充分必要条件;以及2)等价假设应力模式形成相同的杂交元。在此基础上建立了假设应力模式的希尔伯特应力子空间,从而可以利用斯密特方法简单地得到等价的正交归一化应力模式,实现了柔度矩阵对角化,使得杂交元形成过程中完全避免了繁杂的矩阵求逆运算,极大地提高了杂交元分析的计算效率,数值算例表明该方法是确实有效的。
  • [1] Pian T H H. Derivation of element stiffness matrices[J]. AIAA,1964,2(3):576-577.
    [2] Hoa S V, FENG Wei. Hybrid Finite Element Method for Stress Analysis of Laminated Composites[M]. Boston/Dordrecht/London:Kluwer Academic Publihsers,1998.
    [3] HUANG Qian. Modal analysis of deformable bodies with finite degree of deformation freedom-An approach to determination of natural stres modes in hybrid finite elements[A]. In: Chien Wei-zang, Fu Zi-zhi, Eds. Advances in Applied Mathematics & Mechancis in China[C]. IAP,1991,3:283-303.
    [4] FENT Wei, Hoa S V, HUANG Quan. Classification of stress modes in assumed stress fields of hybrid finite elements[J]. International Journal for Numerical Methods in Engineering,1997,40(23):4313-4339.
    [5] 吴长春,卞学. 非协调数值分析与杂交元方法[M]. 北京:科学出版社,1997.
    [6] 焦兆平. 简化杂交应力元H阵的一种方法[J]. 计算结构力学及其应用,1991,8(2):214-216.
    [7] H.卡得斯赛. 有限元法手册[M]. 诸得超,傅子智译,北京:科学出版社,1995.
    [8] Saether Erik, Explicit determination of element stiffness matrix in the hybrid stress method[J]. International Journal for Numerical Methods in Engineering,1995,38(15):2547-2571.
    [9] Han J, Hoa S V. A three-dimensional multilayer composite finite element for stress analysis of composite laminates[J].International Journal for Numerical Methods in Engineering,1993,36(22):3903-3914.
    [10] MacNeal R H, Harder R L. A proposed standard set of problems to test finite element accuracy[J]. Finite Element in Analysis and Design,1985,1(1):3-20.
    [11] MacNeal R H. A theorem regarding the locking of tapered four-noded membrane elements [J]. International Journal for Numerical Methods in Engineering,1987,24(9):1793-1799.
  • 加载中
计量
  • 文章访问数:  2223
  • HTML全文浏览量:  139
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-10-09
  • 修回日期:  2002-08-03
  • 刊出日期:  2002-11-15

目录

    /

    返回文章
    返回