留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均布荷载作用下压电材料简支梁的解析解

张琳楠 石志飞

张琳楠, 石志飞. 均布荷载作用下压电材料简支梁的解析解[J]. 应用数学和力学, 2003, 24(10): 1075-1082.
引用本文: 张琳楠, 石志飞. 均布荷载作用下压电材料简支梁的解析解[J]. 应用数学和力学, 2003, 24(10): 1075-1082.
ZHANG Lin-nan, SHI Zhi-fei. Analytical Solution of a Simply Supported Piezoelectric Beam Subjected to a Uniformly-Distributed Loading[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1075-1082.
Citation: ZHANG Lin-nan, SHI Zhi-fei. Analytical Solution of a Simply Supported Piezoelectric Beam Subjected to a Uniformly-Distributed Loading[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1075-1082.

均布荷载作用下压电材料简支梁的解析解

基金项目: 国家自然科学基金资助项目(50272003);高等学校优秀青年教师教学科研奖励计划基金资助项目(教人司2000[26]号)
详细信息
    作者简介:

    张琳楠(1977- ),女,四川人,硕士(E-mail:zfshi178@sohu.com).

  • 中图分类号: O342

Analytical Solution of a Simply Supported Piezoelectric Beam Subjected to a Uniformly-Distributed Loading

  • 摘要: 采用逆解法求解了均布荷载作用下压电材料简支梁的解析解。首先给出应力函数和电位移函数的多项式表达式,进而根据相容方程以及应力和电位移、位移和电势的边界条件,求得了同时考虑材料弹性参数、密度参数和压电参数呈梯度变化时,简支梁在均布荷载作用下的解析解。作为特例还得到了常体力以及材料参数为常数时的解答。并对结果进行了讨论。
  • [1] 陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
    [2] Wang Z K, Zheng B L. The general solution of three-dimensional problems in pizoelectric media[J].Int J Solids Structures, 1995,32(1): 105-115.
    [3] Ding H J, Chen B, Liang J. General solutions for coupled equations for piezoelectric media[J]. Int J Solids Structures, 1996,33(16) :2283-2298.
    [4] Wang B. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material [J]. Int J Solids and Structures, 1992,29(3) :293-308.
    [5] Ha S K,Keilers C, Chang F K. Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators[J].AIAA J, 1992,30(3) :772-780.
    [6] Hwang W S, Park H C. Finite element modeling of piezoelectric sensors and actuators[J]. AIAA J,1993,31(5) :930-937.
    [7] Wang Q M, Cross L E. Tip deflection and blocking force of soft PZT-based cantilever rainbow actuators[J]. JAm Ceram Soc, 1999,82(1): 103-110.
    [8] Kruusing A. Analysis and optimization of loaded cantilever beam microactuators[J]. Smart Mater Struct,2000,9(2): 186-196.
    [9] Zhu X H, Wang Q, Meng Z Y. A functionally gradient piezoelectric actuator prepared by powder metallurgical process in PNN-PZ-PT system[J]. J Materials Science Letters,1995,14(3) :516-518.
    [10] 石志飞,黄彬彬,杜善义.功能材料力-电耦合问题的几个基本解[J].复合材料学报,2001,18(1):105-114.
    [11] SHI Zhi-fei. General solution of a density functionally gradient piezoelectric cantilever and its applications[J]. Smart Materials and Structures,2002,11(1): 122-129.
    [12] Wu C C M, Kahn M, Moy W. Piezoelectric Ceramics with functional gradients: A new application in material design[J]. JAm Ceram Soc, 1996,79(3) :809-812.
    [13] 林启荣,刘正兴,金占礼.均布荷载作用下两端简支梁的解析解[J].应用数学和力学,2000,21(6):617-623.
  • 加载中
计量
  • 文章访问数:  2620
  • HTML全文浏览量:  139
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-03-12
  • 修回日期:  2003-05-13
  • 刊出日期:  2003-10-15

目录

    /

    返回文章
    返回