留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬时点源分数阶超常扩散的浓度分布

段俊生 徐明瑜

段俊生, 徐明瑜. 瞬时点源分数阶超常扩散的浓度分布[J]. 应用数学和力学, 2003, 24(11): 1151-1156.
引用本文: 段俊生, 徐明瑜. 瞬时点源分数阶超常扩散的浓度分布[J]. 应用数学和力学, 2003, 24(11): 1151-1156.
DUAN Jun-sheng, XU Ming-yu. The Concentration Distribution of Fractional Anomalous Diffusion Caused by an Instantaneous Point Source[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1151-1156.
Citation: DUAN Jun-sheng, XU Ming-yu. The Concentration Distribution of Fractional Anomalous Diffusion Caused by an Instantaneous Point Source[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1151-1156.

瞬时点源分数阶超常扩散的浓度分布

基金项目: 国家自然科学基金资助项目(10272067);教育部博士点基金资助项目(1999042211)
详细信息
    作者简介:

    段俊生(1965- ),男,呼和浩特人,副教授,博士(E-mil:duanjssdu@sina.com).

  • 中图分类号: O175.6

The Concentration Distribution of Fractional Anomalous Diffusion Caused by an Instantaneous Point Source

  • 摘要: 利用质量守恒条件、解的时空相似性、Mellin变换以及Fox函数理论,给出n维空间中(n=1,2,3)瞬时点源分数阶超常扩散浓度分布的Fox函数表示及解析表达式,并讨论其渐近性质.
  • [1] Giorna M,Roman H E.Fractional diffusion equation for transport phenomena in random media[J].Physica A,1992,185(1):87-97.
    [2] REN Fu-yao,LIANG Jin-rong,WANG Xiao-tian.The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media[J].Physics Letters A,1999,252(3):141-150.
    [3] West B J,Grigolini P,Metzler R,et al.Fractional diffusion and Levy stable processes[J].Physical Review E,1997,55(1):99-106.
    [4] Nigmatullin R R.The realization of the generalized transfer equation in a medium with fractal geometry[J].Phys Status Solidi B,1986,133(1):425-430.
    [5] ZENG Qiu-hua,LI Hou-qiang.Diffusion equation for disordered fractal media[J].Fractals,2000,8(1):117-121.
    [6] Wyss W.The fractional diffusion equation[J].JMathPhys,1986,27(11):2782-2785.
    [7] Mainardi F.Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J].Chaos,Solitons and Fractals,1996,7(9):1461-1477.
    [8] Schneider W R,Wyss W.Fractional diffusion and wave equations[J].J Math Phys,1989,30(1):134-144.
    [9] Gorenflo R,Luchko Y,Mainardi F.Wright functions as scale-invariant solutions of the diffusion-wave equation[J].J Comp Appl Math,2000,118(1):175-191.
    [10] Malnardi F,Gorenfio R.On Mittag-Leffler-type function in fractional evolution processes[J].J Comp Appl Math,2000,118(2):283-299.
    [11] Glockle W G,Nonnenmacher T F.Fox fiunction representation of non-debye relaxation processes[J].J Stat Phys,1993,71(3/4):741-757.
    [12] Mathal A M,Saxena R K.The H-Function with Applications in Statistics and Other Disciplines[M].New Delhi:Wiley Eastern Limited,1978.
  • 加载中
计量
  • 文章访问数:  2300
  • HTML全文浏览量:  89
  • PDF下载量:  752
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-07-04
  • 修回日期:  2003-07-02
  • 刊出日期:  2003-11-15

目录

    /

    返回文章
    返回