留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具非线性边界条件的半线性时滞微分方程边值问题奇摄动

任景莉 葛渭高

任景莉, 葛渭高. 具非线性边界条件的半线性时滞微分方程边值问题奇摄动[J]. 应用数学和力学, 2003, 24(12): 1285-1290.
引用本文: 任景莉, 葛渭高. 具非线性边界条件的半线性时滞微分方程边值问题奇摄动[J]. 应用数学和力学, 2003, 24(12): 1285-1290.
REN Jing-li, GE Wei-gao. Singularly Perturbed Boundary Value Problems for Semi-Linear Retarded Differential Equations With Nonlinear Boundary Conditions[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1285-1290.
Citation: REN Jing-li, GE Wei-gao. Singularly Perturbed Boundary Value Problems for Semi-Linear Retarded Differential Equations With Nonlinear Boundary Conditions[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1285-1290.

具非线性边界条件的半线性时滞微分方程边值问题奇摄动

基金项目: 国家自然科学基金资助项目(19871005)
详细信息
    作者简介:

    任景莉(1973- ),女,河南范县人,讲师,博士生(E-mail:ren-jingli@163.com).

  • 中图分类号: O175.5

Singularly Perturbed Boundary Value Problems for Semi-Linear Retarded Differential Equations With Nonlinear Boundary Conditions

  • 摘要: 利用微分不等式理论研究了一类具非线性边界条件的半线性时滞微分方程边值问题.采用新的方法构造上下解,得到了此边值问题解的存在性的充分条件,并给出了解的一致有效渐近展开式.
  • [1] Lange C G,Miura R M.Singular perturbation analysis of boundary value problem for differential difference equations[J].SIAM J Appl Math,1982,42(3):502-503.
    [2] MIAO Shu-mei,ZHOU Qin-de.The asymptotic expansions of singularly perturbed boundary value problems for semi-linear differential difference equations[J].Northeastern Math J,1989,5(3):283-293.
    [3] 周钦德,苗树梅.关于微分差分方程边值问题[J].数学学报,1989,32(1):55-70.
    [4] LU Shi-ping.A kind of singularly perturbed boundary value problems for nonlinear Volterra functional differential equations[J].Ann Differential Equations,1998,14(2):247-253.
    [5] LU Shi-ping.A kind of singularly perturbed boundary value problems for nonlinear Volterra functional differential equations[J].Appl Math Chinese Univ,Ser B,2000,15(2):137-142.
    [6] Klasen G A.Differential inequalities and existence theorems for second order boundary value problems[J].Differenatial Equations,1971,10(4):529-531.
    [7] Hale J.Theory of Functional Differential Equations[M].New York:Springer-Verlag,1977.
  • 加载中
计量
  • 文章访问数:  2372
  • HTML全文浏览量:  130
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-04-19
  • 修回日期:  2003-05-02
  • 刊出日期:  2003-12-15

目录

    /

    返回文章
    返回