留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交通流瓶颈效应的运动学描述

张鹏 吴冬艳 黄仕进 陶亦舟

张鹏, 吴冬艳, 黄仕进, 陶亦舟. 交通流瓶颈效应的运动学描述[J]. 应用数学和力学, 2009, 30(4): 399-408.
引用本文: 张鹏, 吴冬艳, 黄仕进, 陶亦舟. 交通流瓶颈效应的运动学描述[J]. 应用数学和力学, 2009, 30(4): 399-408.
ZHANG Peng, WU Dong-yan, S. C. Wong, TAO Yi-zhou. Kinetic Description of Bottleneck Effects in Traffic Flow[J]. Applied Mathematics and Mechanics, 2009, 30(4): 399-408.
Citation: ZHANG Peng, WU Dong-yan, S. C. Wong, TAO Yi-zhou. Kinetic Description of Bottleneck Effects in Traffic Flow[J]. Applied Mathematics and Mechanics, 2009, 30(4): 399-408.

交通流瓶颈效应的运动学描述

基金项目: 国家自然科学基金资助项目(70629101;10771134);国家重点基础研究发展计划资助项目(2006CB705500);香港研究资助局项目(HKU7183/08E)
详细信息
    作者简介:

    张鹏(1963- ),男,云南个旧人,教授,博士(联系人.E-mail:Pzhang@mail.shu.edu.cn).

  • 中图分类号: TB126

Kinetic Description of Bottleneck Effects in Traffic Flow

  • 摘要: 采用一个推广的LWR模型研究交通瓶颈效应.通过求解流通量间断的Riemann问题,得到关于模型解结构的解析结果,由此导出了描述在瓶颈上游车流的排队现象及其队列长度和高度(密度)的一个典型解,并能够构造模型方程的一种δ-映射算法.更有意义的是,表明了通过采用三角形基本图,这一运动学模型能够描述时走时停波.通过数值模拟,验证了数值结果与解析结果的一致性,从而支撑了文章的理论结果.
  • [1] Lighthill M J, Whitham G B. On kinematic waves—Ⅱ:a theory of traffic flow on long crowded roads[J].Proceedings of the Royal Society of London, Series A,1955,229(1178):317-345. doi: 10.1098/rspa.1955.0089
    [2] Richards P I. Shockwaves on the highway[J].Operations Research,1956,4(1):42-51. doi: 10.1287/opre.4.1.42
    [3] ZHANG Peng, LIU Ru-xun. Hyperbolic conservation laws with space-dependent flux—Ⅰ:characteristics theory and Riemann problem[J].Journal of Computational and Applied Mathematics,2003,156(1):1-21. doi: 10.1016/S0377-0427(02)00880-4
    [4] ZHANG Peng, LIU Ru-xun. Hyperbolic conservation laws with space-dependent flux—Ⅱ:general study on numerical fluxes[J].Journal of Computational and Applied Mathematics, 2005,176(1):105-129. doi: 10.1016/j.cam.2004.07.005
    [5] ZHANG Peng, LIU Ru-xun. Generalization of Runge-Kutta discontinuous Galerkin method to LWR traffic flow model with inhomogeneous road conditions[J].Numerical Methods for Partial Differential Equations,2005,21(1):80-88. doi: 10.1002/num.20023
    [6] Bürger R , Gracía A, Karlsen K H,et al.A family of numerical schemes for kinematic flows with discontinuous flux[J].Journal of Engineering Mathematics,2008,60(3/4):387-425. doi: 10.1007/s10665-007-9148-4
    [7] Bürger R, Gracía A, Karlsen K H,et al.Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model[J].Network Heterogeneous Media,2008,3(1):1-41. doi: 10.3934/nhm.2008.3.1
    [8] Lin W H, Lo H K. A theoretical probe of a German experiment on stationary moving traffic jams[J].Transportation Research Part B,2003,37(3):251-261. doi: 10.1016/S0191-2615(02)00012-7
    [9] Kerner B S, Konhuser P. Structure and parameters of clusters in traffic flow[J]. Physical Review E,1994,50(1):54-83. doi: 10.1103/PhysRevE.50.54
    [10] Greenberg J M. Congestion redux[J].SIAM Journal on Applied Mathematics,2004,64(4):1175-1185. doi: 10.1137/S0036139903431737
    [11] Siebel F, Mauser W. On the fundamental diagram of traffic flow[J].SIAM Journal on Applied Mathematics,2006,66(4):1150-1162. doi: 10.1137/050627113
    [12] Siebel F, Mauser W. Synchronized flow and wide moving jams from balanced vehicular traffic[J].Physical Review E,2006,73(6):066108. doi: 10.1103/PhysRevE.73.066108
    [13] Siebel F, Mauser W, Moutari S,et al. Balanced vehicular traffic at a bottleneck[J].Mathematical and Computer Modelling,2009,49(3/4): 689-702. doi: 10.1016/j.mcm.2008.01.006
    [14] Zhang P, Wong S C. Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models[J].Physical Review E,2006,74(2):026109. doi: 10.1103/PhysRevE.74.026109
    [15] Xu R Y, Zhang P, Dai S Q,et al. Admissibility of a wide cluster solution in anisotropic higher-order traffic flow models[J].SIAM Journal on Applied Mathematics,2007,68(2):562-573. doi: 10.1137/06066641X
    [16] Zhang P, Wong S C, Shu C W. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway[J].Journal of Computational Physics,2006,212(2):739-756. doi: 10.1016/j.jcp.2005.07.019
    [17] Wong S C, Wong G C K. An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship[J].Transportation Research Part B,2002,36(8):683-706. doi: 10.1016/S0191-2615(01)00023-6
    [18] Karlsen K H, Risebro N H, Towers J D. Front tracking for scalar balance equations[J]. Journal of Hyperbolic Differential Equations,2004,1(1):115-148. doi: 10.1142/S0219891604000068
    [19] Chen W, Wong S C, Shu C W. Efficient implementation of the shock-fitting algorithm for the Lighthill-Whitham-Richards traffic flow model[J].International Journal for Numerical Methods in Engineering,2007,74(4):554-600.
    [20] Jiang R, Hu M B, Jia B,et al. Enhancing highway capacity by homogenizing traffic flow[J].Transportmetrica,2008,4(1):51-61. doi: 10.1080/18128600808685676
    [21] Zhang P, Wong S C, Xu Z. A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking[J].Computer Methods in Applied Mechanics Engineering,2008, 197(45/48):3816-3827. doi: 10.1016/j.cma.2008.03.003
    [22] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[A]. In:Cockburn B,Johnson C,Shu C W, et al, Eds.Numerical Approximation of Nonlinear Hyperbolic Equations[C]. Vol 1697.Lecture Notes in Mathematics.Berlin,Heidelberg:Springe,1998, 325-432.
    [23] Zhang M, Shu C W, Wong G C K,et al. A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model[J].Journal of Computational Physics,2003, 191(2):639-659. doi: 10.1016/S0021-9991(03)00344-9
  • 加载中
计量
  • 文章访问数:  3029
  • HTML全文浏览量:  96
  • PDF下载量:  1101
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-14
  • 修回日期:  2009-02-13
  • 刊出日期:  2009-04-15

目录

    /

    返回文章
    返回