留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟线性三阶演化方程的初步群分类

黄定江 张鸿庆

黄定江, 张鸿庆. 拟线性三阶演化方程的初步群分类[J]. 应用数学和力学, 2009, 30(3): 265-281.
引用本文: 黄定江, 张鸿庆. 拟线性三阶演化方程的初步群分类[J]. 应用数学和力学, 2009, 30(3): 265-281.
HUANG Ding-jiang, ZHANG Hong-qing. Preliminary Group Classification of Quasi-Linear Third Order Evolution Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 265-281.
Citation: HUANG Ding-jiang, ZHANG Hong-qing. Preliminary Group Classification of Quasi-Linear Third Order Evolution Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 265-281.

拟线性三阶演化方程的初步群分类

基金项目: 国家重点基础发展规划(“973”)资助项目(2004CB318000)
详细信息
    作者简介:

    黄定江(1981- ),男,江西上饶人,博士(Tel:+86-21-64253147;E-mail:hdj8116@163.com);张鸿庆,教授(联系人.Tel:+86-411-84709062;E-mail:zhanghq@dlut.edu.cn).

  • 中图分类号: O175.24;O175.29;O152.5

Preliminary Group Classification of Quasi-Linear Third Order Evolution Equations

  • 摘要: 利用古典无穷小算法、等价性变换技巧和有限维抽象李代数的分类理论,给出了一般拟线性三阶演化方程在半单和一维至四维可解李代数下不变的群分类.证明了只存在3个不等价的方程在三维单李代数下不变,而且进一步证明在所有半单李代数下不变的不等价方程只有这3个.另外,还证明了存在2个、5个、29个和26个不等价的方程,分别在一维至四维可解李代数下不变.
  • [1] Bluman G,Anco S C.Symmetry and Integration Methods for Differential Equations[M].New York:Springer,2002.
    [2] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989.
    [3] Fushchych W I,Shtelen W M,Serov N I.Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics[M].Dordrecht:Kluwer,1993.
    [4] Fushchych W I,Zhdanov R Z.Symmetries and Exact Solutions of Nonlinear Dirac Equations[M].Kyiv:Naukova Ukraina,1997.
    [5] Ibragimov N H.Transformation Groups Applied to Mathematical Physics[M].Dordrecht:D Reidel Publishing Co.,1985.
    [6] Ibragimov N H.Lie Group Analysis of Differential Equations—Symmetries,Exact Solutions and Conservation Laws[M].Vol 1.Boca Raton:CRC Press,1994.
    [7] Ibragimov N H.Elementary Lie Group Analysis and Ordinary Differential Equations[M].New York:Wiley,1999.
    [8] Olver P J.Application of Lie Groups to Differential Equations[M].New York:Springer-Verlag,1986.
    [9] Ovsiannikov L V.Group Analysis of Differential Equations[M].New York:Academic Press,1982.
    [10] Stephani H.Differential Equation:Their Solution Using Symmetries[M].Cambridge:Cambridge University Press,1994.
    [11] Lie S,Engel F.Theorie der Transformationsgruppen[M].3Bd.Leipzig:Teubner.1888,1890,1893.
    [12] Lie S.On integration of a class of Linear partial differential equations by means of definite integrals[A].In:Ibragimov N H Ed.CRC Handbook of Lie Group Analysis of Differential Equations[C]. Vol.2,Boca Raton:CRC Press, 1994,473-508.(Translation by Ibragimov N H of Arch for Math,Bd.VI,Heft 3,328-368,Kristiania 1881).
    [13] Gazeau J P,Winternitz P.Symmetries of variable coefficient Korteweg-de Vries equations[J].J Math Phys,1992,33(12):4087-4102. doi: 10.1063/1.529807
    [14] Güngr F,Lahno V I,Zhdanov R Z.Symmetry classification of KdV-type nonlinear evolution equations[J].J Math Phys,2004,45(6):2280-2313. doi: 10.1063/1.1737811
    [15] Basarab-Horwath P,Lahno V,Zhdanov R.The structure of Lie algebras and the classification problem for partial differential equations[J].Acta Applicandae Mathematicae,2001,69(1):43-94. doi: 10.1023/A:1012667617936
    [16] Bluman G,Temuerchaolu,Sahadevan R.Local and nonlocal symmetries for nonlinear telegraph equation[J].J Math Phys,2005,46(2):023505. doi: 10.1063/1.1841481
    [17] QU Chang-zheng.Allowed transformations and symmetry class of variable-coefficient Burgers equations[J].IMA J Appl Math,1995,54(3):203-225. doi: 10.1093/imamat/54.3.203
    [18] HUANG Ding-jiang,Ivanova N M.Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations[J].J Math Phys,2007,48(7):073507. doi: 10.1063/1.2747724
    [19] Zhdanov R Z,Lahno V I.Group classification of heat conductivity equations with a nonlinear source[J].J Phys A:Math Gen,1999,32:7405-7418. doi: 10.1088/0305-4470/32/42/312
    [20] Lahno V I,Zhdanov R Z.Group classification of nonlinear wave equations[J].J Math Phys,2005,46(5):053301. doi: 10.1063/1.1884886
    [21] Lahno V I,Zhdanov R Z,Magda O.Group classification and exact solutions of nonlinear wave equations[J].Acta Appl Math,2006,91(3):253-313. doi: 10.1007/s10440-006-9039-0
    [22] Zhdanov R Z,Lahno V I.Group classification of the general evolution equation:Local and quasilocal symmetries[J].Symmetry Integrability and Geometry:Methods and Applications,2005,1:009.
    [23] 黄定江.非线性波、几何可积性与群分类[D].博士学位论文,大连:大连理工大学,2007.
    [24] Basarab-Horwath P,Gungor F,Lahno V.Symmetry classification of third-order nonlinear evolution equations[Z]. arXiv,2008,nlin.SI-0802.0367v1:1-73.
    [25] Gagnon L,Winternitz P.Symmetry classes of variable coefficient nonlinear Schrdinger equations[J].J Phys A:Math Gen,1993,26:7061-7076. doi: 10.1088/0305-4470/26/23/043
    [26] Gómez-Ullate D,Lafortune S,Winternitz P.Symmetries of discrete dynamical systems involving two species[J].J Math Phys,1999,40(6):2782-2804. doi: 10.1063/1.532728
    [27] Gungor F,Winternitz P.Generalized Kadomtsev-Petviashvili equation with an infinite dimensional symmetry algebra[J].J Math Anal Appl,2002,276:314-328. doi: 10.1016/S0022-247X(02)00445-6
    [28] Levi D,Winternitz P.Symmetries of discrete dynamical systems[J].J Math Phys,1996,37(11):5551-5576. doi: 10.1063/1.531722
    [29] Lafortune S,Tremblay S,Winternitz P.Symmetry classification of diatomic molecular chains[J].J Math Phys,2001,42(11):5341-5357. doi: 10.1063/1.1398583
    [30] Zhdanov R Z,Fushchych W I,Marko P V.New scale-invariant nonlinear differential equations for a complex scalar field[J].Physica D,1996,95(2):158-162. doi: 10.1016/0167-2789(96)00047-4
    [31] Zhdanov R,Roman O.On preliminary symmetry classification of nonlinear Schrdinger equation with some applications of Doebner-Goldin models[J].Rep Math Phys,2000,45:273-291. doi: 10.1016/S0034-4877(00)89037-0
    [32] Lie S.Gesammelte Abhandlungen[M].Vol 5.Leipzig:Teubner,1924.
    [33] Lie S.Gesammelte Abhandlungen[M].Vol 6.Leipzig:Teubner,1927.
  • 加载中
计量
  • 文章访问数:  3081
  • HTML全文浏览量:  167
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-24
  • 修回日期:  2008-12-17
  • 刊出日期:  2009-03-15

目录

    /

    返回文章
    返回