Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation
-
摘要: 分析了一类带周期边界条件的广义KdV方程Fourier谱方法,得到了L2范数下最优误差估计,改进了由Maday和Quarteroni给出的结果.还提出了一种修改Fourier拟谱方法,并且证明它享有与Fourier谱方法同样的收敛性.
-
关键词:
- Fourier谱方法 /
- 修改Fourier拟谱方法 /
- 广义KdV方程 /
- 误差估计
Abstract: A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed and corresponding optimal error estimate in L2-norm is obtained, which improves the one by Maday and Quarteroni. Also a modified Fourier pseudospectral method is presented and it is proven that it enjoys the same convergence properties as the Fourier spectral method. -
[1] Abe K,Inoue O.Fourier expansion solution of the KdV equation[J].J Computational Physics,1980, 34(2):202-210. doi: 10.1016/0021-9991(80)90105-9 [2] Fornberg B,Whitham G B. A numerical and theoretical study of certain nonlinear phenomena[J].Phil Trans Roy Soc London Ser A,1978,289(1361):373-404. doi: 10.1098/rsta.1978.0064 [3] Chan T F,Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,1985,22(3):441-454. doi: 10.1137/0722026 [4] Ma H P,Guo B Y. The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation[J].J Computational Physics,1986,65(1):120-137. doi: 10.1016/0021-9991(86)90007-0 [5] Maday Y,Quarteroni A. Error analysis for spectral approximation of the Korteweg-de Vries equation[J].RAIRO Modélisation Mathématique et Analyse Numérique,1988,22(3):499-529. [6] Kalisch H. Rapid convergence of a Galerkin projection of the KdV equation[J].Comptes Rendus Mathematique,2005,341(7):457-460. doi: 10.1016/j.crma.2005.09.006 [7] Bjrkav[KG-*4]. ag M,Kalisch H. Exponential convergence of a spectral projection of the KdV equation[J].Physics Letters A,2007,365(4):278-283. doi: 10.1016/j.physleta.2006.12.085 [8] Kreiss H O,Oliger J. Stability of the Fourier method[J].SIAM J Numerical Analysis,1979,16(3):421-433. doi: 10.1137/0716035 [9] Adams R A.Sobolev Spaces[M]. New York:Academic Press,1975. [10] Ma M P,Sun W W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,2001,39(4):1380-1394. doi: 10.1137/S0036142900378327 [11] Wahlbin Lars B. A dissipative Galerkin method for the numerical solution of first order hyperbolic equations[A].In:de Boor C,Ed.Mathematical Aspects of Finite Elements in Partial Differential Equations[C].New York:Academic Press,1974,147-169.
计量
- 文章访问数: 3118
- HTML全文浏览量: 196
- PDF下载量: 725
- 被引次数: 0