留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于应变梯度理论的粘塑性厚壁圆筒和球壳极限内压分析

李茂林 扶名福

李茂林, 扶名福. 基于应变梯度理论的粘塑性厚壁圆筒和球壳极限内压分析[J]. 应用数学和力学, 2008, 29(12): 1411-1416.
引用本文: 李茂林, 扶名福. 基于应变梯度理论的粘塑性厚壁圆筒和球壳极限内压分析[J]. 应用数学和力学, 2008, 29(12): 1411-1416.
LI Mao-lin, FU Ming-fu. Limit Analysis of Viscoplastic Thick-Walled Cylinder and Spherical Shell Under Internal Pressure Using a Strain Gradient Plasticity Theory[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1411-1416.
Citation: LI Mao-lin, FU Ming-fu. Limit Analysis of Viscoplastic Thick-Walled Cylinder and Spherical Shell Under Internal Pressure Using a Strain Gradient Plasticity Theory[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1411-1416.

基于应变梯度理论的粘塑性厚壁圆筒和球壳极限内压分析

基金项目: 教育部博士点基金资助项目(20050403002)
详细信息
    作者简介:

    李茂林(1972- ),男,江西临川人,博士生(E-mail:niatlml@163.com);扶名福,教授(联系人.Tel:+86-791-3969006;E-mail:fmfu@ncu.edu.cn).

  • 中图分类号: O345

Limit Analysis of Viscoplastic Thick-Walled Cylinder and Spherical Shell Under Internal Pressure Using a Strain Gradient Plasticity Theory

  • 摘要: 基于应变梯度塑性理论,分析了内压作用下厚壁圆筒和球壳的塑性极限荷载.结果表明:圆筒内径在微米量级时,存在尺度效应现象,内径减小,其尺度效应增强;变形越大,影响越大;应变速率敏感指数越大,尺度效应越明显.经典塑性理论结果是当前解的特例.
  • [1] Mühlhaus H B, Aifantis E C.A variational principle for gradient plasticity [J].International Journal of Solids and Structure,1991,28(7):845-857. doi: 10.1016/0020-7683(91)90004-Y
    [2] Assempour A, Safikhani A R, Hashemi R.An improved strain gradient approach for determination of deformation localization and forming limit diagrams[J].Journal of Materials Processing Technology,2008,DOI: 10.1016/j.jmatprotec.2008.04.030.
    [3] Zhu H X,Karihaloo B L.Size-dependent bending of thin metallic films[J].International Journal of Plasticity,2008,24(6):991-1007. doi: 10.1016/j.ijplas.2007.08.002
    [4] Tsagrakis I,Aifantis E C.Strain gradient and wavelet interpretation of size effects in yield and strength[J].Mechanics of Materials,2003,35(8):733-745. doi: 10.1016/S0167-6636(02)00205-3
    [5] Aifantis E C.Update on a class of gradient theories[J].Mechanics of Materials,2003,35(3):259-280. doi: 10.1016/S0167-6636(02)00278-8
    [6] Jiang G L. Nonlinear finite element formulation of kinematic limit analysis [J].International Journal for Numerical Methods in Engineering,1995,38(16):2775-2807. doi: 10.1002/nme.1620381607
    [7] Haghi M,Anand L.Analysis of strain-hardening viscoplastic thick-walled sphere and cylinder under external pressure[J].Internat Journal of Plasticity,1991,7(3):123-140. doi: 10.1016/0749-6419(91)90027-V
    [8] Leu S Y.Analytical and numerical investigation of strain-hardening viscoplastic thick-walled cylinders under internal pressure by using sequential limit analysis[J].Computer Methods in Applied Mechanics and Engineering,2007,196(25):2713-2722. doi: 10.1016/j.cma.2007.02.001
    [9] Gao X L. An expanding cavity model incorporating strain-hardening and indentation size effects[J].Internat Journal of Solids and Structure,2006,43(21):6615-6629. doi: 10.1016/j.ijsolstr.2006.01.008
  • 加载中
计量
  • 文章访问数:  2791
  • HTML全文浏览量:  147
  • PDF下载量:  668
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-14
  • 修回日期:  2008-10-15
  • 刊出日期:  2008-12-15

目录

    /

    返回文章
    返回