留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切载荷作用下含损伤胶接材料界面动应力强度因子的研究

蔡艳红 陈浩然 唐立强 闫澄 江莞

蔡艳红, 陈浩然, 唐立强, 闫澄, 江莞. 剪切载荷作用下含损伤胶接材料界面动应力强度因子的研究[J]. 应用数学和力学, 2008, 29(11): 1376-1386.
引用本文: 蔡艳红, 陈浩然, 唐立强, 闫澄, 江莞. 剪切载荷作用下含损伤胶接材料界面动应力强度因子的研究[J]. 应用数学和力学, 2008, 29(11): 1376-1386.
CAI Yan-hong, CHEN Hao-ran, TANG Li-qiang, YAN Cheng, JIANG Wan. Dynamic Stress Intensity Factor Analysis of Adhesively Bonded Material Interface With Damage Under Shear Loading[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1376-1386.
Citation: CAI Yan-hong, CHEN Hao-ran, TANG Li-qiang, YAN Cheng, JIANG Wan. Dynamic Stress Intensity Factor Analysis of Adhesively Bonded Material Interface With Damage Under Shear Loading[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1376-1386.

剪切载荷作用下含损伤胶接材料界面动应力强度因子的研究

基金项目: 国家自然科学基金资助项目(10672027);国家重大基础研究计划(973)资助项目(2006CB601205);国家杰出青年基金资助项目(50625414)
详细信息
    作者简介:

    蔡艳红(1969- ),女,黑龙江人,讲师,博士;陈浩然(1940- ),男,教授,博士生导师(联系人.Tel:+86-411-84706348;E-mail:chenhr@dlut.edu.cn).

  • 中图分类号: O346.1

Dynamic Stress Intensity Factor Analysis of Adhesively Bonded Material Interface With Damage Under Shear Loading

  • 摘要: 主要针对剪切载荷作用下,胶接材料接合区域界面裂纹尖端动态应力强度因子进行了分析,其中考虑了裂尖区域的损伤.通过积分变换,引入位错密度函数,奇异积分方程被简化为代数方程,并采用配点法求解;最后经过Laplace逆变换,得到动态应力强度因子的时间响应.Ⅱ型动应力强度因子随着黏弹性胶层的剪切松弛参量、弹性基底的剪切模量和Poisson比的增加而增大;随膨胀松弛参量的增加而减小.损伤屏蔽发生在裂纹扩展的起始阶段.裂纹尖端的奇异性指数(-0.5)是与材料参数、损伤程度和时间无关的,而振荡指数由黏弹性材料参数控制.
  • [1] 张丽新,杨士勤,何世禹,等. 在空间环境因素作用下胶接材料的损伤行为[J]. 中国胶粘剂,2001,10(4):42-48.
    [2] Choupani Naghdali. Interfacial mixed-mode fracture characterization of adhesively bonded joints[J].International Journal of Adhesion & Adhesives,2008,28(6):267-282.
    [3] Goyal Vinay K, Johnson Eric R,Goyal Vijay K. Predictive strength-fracture model for composite bonded joints[J].Composite Structures,2008,82(3): 434-446. doi: 10.1016/j.compstruct.2007.01.029
    [4] Liljedahl C D M, Crocombe A D, Wahab M A,et al.Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach[J].International Journal of Adhesion & Adhesives,2007,27(6):505-518.
    [5] Casas-Rodriguez J P, Ashcroft I A,Silberschmidt V V. Damage in adhesively bonded CFRP joints: Sinusoidal and impact-fatigue[J].Composites Science and Technology,2008, DOI: 10.1016/j.compscitech.2008.04.030.
    [6] Roberta Rizza, Kevinb Meade. No-slip crack model for damaged bone/cement interface[J].Engineering Fracture Mechanics,2003,70(6):757-773. doi: 10.1016/S0013-7944(02)00085-1
    [7] Papanikos P, Tserpes K I, Labeas G,et al.Progressive damage modelling of bonded composite repairs[J].Theoretical and Applied Fracture Mechanics,2005,43(2):189-198. doi: 10.1016/j.tafmec.2005.01.004
    [8] Nayeb-Hashemi H, Swet D,Vaziri A.New electrical potential method for measuring crack growth in nonconductive materials[J].Measurement,2004,36(2):121-129. doi: 10.1016/j.measurement.2004.05.002
    [9] Guo T F, Cheng L. Vapor pressure and void size effects on failure of a constrained ductile film [J].Journal of the Mechanics and Physics of Solids,2003,51(6):993-1014. doi: 10.1016/S0022-5096(03)00007-3
    [10] Xu L Roy, Rosakis Ares J.An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography[J].Optics and Lasers in Engineering,2003,40(4):263-288. doi: 10.1016/S0143-8166(02)00093-3
    [11] 张凤鹏,黄宝宗.复合材料层板分层尖端微裂纹损伤演变分析[J].高压物理学报. 1999,13(增刊):349-352.
    [12] 刘忠. 考虑裂尖损伤的黏弹性裂纹扩展规律[J]. 湘潭大学自然科学学报,1997, 19(2):38-42.
    [13] 黄西成. 聚合物材料损伤理论[J].应用数学和力学,1999,19(3):325-329.
    [14] 樊建平,沈为,彭立华. 树脂基复合材料蠕变损伤本构方程[J]. 华中理工大学学报,1996,24(增刊(Ⅱ)):100-102.
    [15] 蔡艳红,陈浩然,王灿. 无限长条板中弹性与黏弹性界面裂纹尖端场[J]. 复合材料学报,2005,22(6): 156-164.
    [16] Erdogan F. Mixed boundary value problems[J].Mechanics Today,1978,6(4):1-86.
    [17] Wwi P J,Zhang S Y. Singularity of dynamic stress fields around an interface crack between viscoelastic bodies [J].International Journal of Fracture,2004,126(2):165-177. doi: 10.1023/B:FRAC.0000026361.01552.80
    [18] Erdogan F, Gupta G D, Cook T S.Numerical solution of singular integral equation[A].In: G C Sih,Ed.Mechanics of Fracture 1, Methods of Analysis and Solutions of Crack Problems[C].Noordhoff, Leyden: International Publishing, 1973, 368-425.
    [19] Erdogan F, Wu B H. Crack problem in FGM layers under thermal stresses[J].J Thermal Stresses,1996,19(3):237-265. doi: 10.1080/01495739608946172
    [20] Rice J. Elastic fracture mechanics concepts for interfacial cracks[J].J Appl Mech,1988,55(1):98-103. doi: 10.1115/1.3173668
  • 加载中
计量
  • 文章访问数:  3338
  • HTML全文浏览量:  169
  • PDF下载量:  803
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-08-17
  • 修回日期:  2008-09-26
  • 刊出日期:  2008-11-15

目录

    /

    返回文章
    返回