留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对流-扩散问题的6节点三角形单元流线迎风有限元法和自适应网格重分技术

N·瓦逊哈克 P·德乔姆凡

N·瓦逊哈克, P·德乔姆凡. 对流-扩散问题的6节点三角形单元流线迎风有限元法和自适应网格重分技术[J]. 应用数学和力学, 2008, 29(11): 1303-1313.
引用本文: N·瓦逊哈克, P·德乔姆凡. 对流-扩散问题的6节点三角形单元流线迎风有限元法和自适应网格重分技术[J]. 应用数学和力学, 2008, 29(11): 1303-1313.
Niphon Wansophark, Pramote Dechaumphai. Streamline Upwind Finite Element Method Using 6-Node Triangular Element With Adaptive Remeshing Technique for Convective-Diffusion Problems[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1303-1313.
Citation: Niphon Wansophark, Pramote Dechaumphai. Streamline Upwind Finite Element Method Using 6-Node Triangular Element With Adaptive Remeshing Technique for Convective-Diffusion Problems[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1303-1313.

对流-扩散问题的6节点三角形单元流线迎风有限元法和自适应网格重分技术

基金项目: 泰国研究基金(TRF)资助项目
详细信息
  • 中图分类号: O241.82;O35

Streamline Upwind Finite Element Method Using 6-Node Triangular Element With Adaptive Remeshing Technique for Convective-Diffusion Problems

  • 摘要: 提出了使用6节点三角形单元的流线迎风有限元法.该方法沿局部流线,直接用于输运控制方程的对流项.采用多个对流-扩散实例来评价该方法的有效性,结果显示该方法是单调的,并且不产生任何振荡.另外,自适应网格技术和该方法相结合后,进一步提高了解的精度,又减少了计算时间和对计算机内存的需求.
  • [1] Patankar S V.Numerical Heat Transfer and Fluid Flow[M].Washington D C:Hemisphere,1890.
    [2] Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Eng,1982,32(1/3):199-259. doi: 10.1016/0045-7825(82)90071-8
    [3] Rice J G, Schnipke R J.A monotone streamline upwind finite element method for convection-dominated flows[J].Comput Methods Appl Mech Eng,1985,48(3):313-327. doi: 10.1016/S0045-7825(85)80005-0
    [4] Hill D L, Baskharone E A.A monotone streamline upwind method for quadratic finite elements[J].International Journal for Numerical Methods in Fluid,1993,17(6):463-475. doi: 10.1002/fld.1650170603
    [5] Wansophark N, Dechaumphai P. Combined adaptive meshing technique and segregated finite element algorithm for analysis of free and forced convection heat transfer[J].Finite Elements in Analysis and Design,2004,40(5/6): 645-663. doi: 10.1016/S0168-874X(03)00101-X
    [6] Zienkiewicz O C, Liu Y C, Huang G C.Error estimates and convergence rates for various incompressible elements[J].International Journal for Numerical Methods in Engineering,1989,28:2191-2202. doi: 10.1002/nme.1620280914
    [7] Dechaumphai P. Evaluation of an adaptive unstructured remeshing technique for integrated fluid-thermal-structural analysis[J].Journal of Thermophysics and Heat Transfer,1991,5(4):599-606. doi: 10.2514/3.305
    [8] Huebner H K, Thornton E A,Byrom T G.The Finite Element Method for Engineers[M].3rd Ed. New York:John Wiley & Sons, Inc,1995.
    [9] Limtrakarn W, Dechaumphai P. Adaptive finite element method for high-speed flow-structure interaction[J].Acta Mechanica Sinica,2004,20(6):597-606. doi: 10.1007/BF02485863
    [10] Fletcher C A J.Computational Techniques for Fluid Dynamics[M]. Berlin: Springer-Verlag,1988.
    [11] Brown G M. Heat or mass transfer in a fluid in laminar flow in a circular or flat conduit[J].AIChE Journal,1960,6:179-183. doi: 10.1002/aic.690060204
    [12] Smith R M, Hutton A G.The numerical treatment of advection: a performance comparison of current methods[J].Numerical Heat Transfer Part B,1982,5(4):439-461.
  • 加载中
计量
  • 文章访问数:  3127
  • HTML全文浏览量:  170
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-14
  • 修回日期:  2008-07-15
  • 刊出日期:  2008-11-15

目录

    /

    返回文章
    返回