留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性粘弹性多孔介质中平面波的传播

A·K·瓦西什 M·D·夏玛

A·K·瓦西什, M·D·夏玛. 各向异性粘弹性多孔介质中平面波的传播[J]. 应用数学和力学, 2008, 29(9): 1037-1047.
引用本文: A·K·瓦西什, M·D·夏玛. 各向异性粘弹性多孔介质中平面波的传播[J]. 应用数学和力学, 2008, 29(9): 1037-1047.
A. K. Vashishth, M. D. Sharma. Propagation of Plane Waves in Poroviscoelastic Anisotropic Media[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1037-1047.
Citation: A. K. Vashishth, M. D. Sharma. Propagation of Plane Waves in Poroviscoelastic Anisotropic Media[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1037-1047.

各向异性粘弹性多孔介质中平面波的传播

详细信息
  • 中图分类号: O357.3;O343.8

Propagation of Plane Waves in Poroviscoelastic Anisotropic Media

  • 摘要: 讨论了弹性多孔介质中波的传播的(或许是)最一般的模型.考虑的介质是粘弹性的、各向异性的、多孔固体骨架,其各向异性可渗透的孔隙中充满着粘性液体.考虑一般类型的各向异性,并且介质中的衰减波作为非均质波处理.对介质中4种衰减波中的每一种,将复慢矢量分解定义为相速度、均质衰减、非均质衰减和衰减角.用一个无量纲参数来度量非均质波与其均质波的区别.利用北海沙岩的数值模型,分析传播方向、非均质参数、频率范围、各向异性对称性、骨架滞弹性和孔隙流体粘度,对该类介质中波传播特性的影响.
  • [1] Biot M A.The theory of propagation of elastic waves in a fluid-saturated porous solid[J].Ⅰ—Low-frequency range,Ⅱ—Higher frequency range[J].J Acoust Soc Am,1956,28(2):168-191. doi: 10.1121/1.1908239
    [2] Biot M A. Mechanics of deformation and acoustic propagation in porous media[J].J Appl Phys,1962,33(4):1482-1498. doi: 10.1063/1.1728759
    [3] Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J].J Acoust Soc Am,A,1962,34(9):1254-1264. doi: 10.1121/1.1918315
    [4] Sharma M D, Gogna M L. Seismic wave propagation in a viscoelastic porous solid saturated by viscous liquid[J].PAGEOPH,1991,135(3):383-400. doi: 10.1007/BF00879471
    [5] Carcione J M, Cavallini F.Attenuation and quality factor surfaces in anisotropic viscoelastic media[J].Mechanics of Materials,1995,19(4):311-327. doi: 10.1016/0167-6636(94)00040-N
    [6] Carcione J M, Helle H B, Zhao T. Effects of attenuation and anisotropy on reflection amplitude versus offset[J].Geophysics,1998,63(5):1652-58. doi: 10.1190/1.1444461
    [7] Pham N H, Carcione J M, Helle H B,et al.Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation[J]. Geophys Prosp,2002,50(6):615-627. doi: 10.1046/j.1365-2478.2002.00343.x
    [8] Gurevich B. Effect of fluid viscosity on elastic wave attenuation in porous rocks[J].Geophysics,2002,67(1):264-270.
    [9] Sharma M D.Wave propagation in a general anisotropic poroelastic medium with anisotropic permeability: phase velocity and attenuation[J].Internat J Solids Structure,2004,41(16/17):4587-4597. doi: 10.1016/j.ijsolstr.2004.02.066
    [10] Sharma M D. Anisotropic propagation of inhomogeneous waves in dissipative poroelastic solids[J].Geophys J Internat,2005,163(3):981-990. doi: 10.1111/j.1365-246X.2005.02701.x
    [11] Sharma M D. Propagation of inhomogeneous plane waves in anisotropic viscoelastic media[J].Acta Mech,2008, DOI: 10.1007/s 00707-008-0034-6.
    [12] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid —Ⅲ reflection of plane waves at a free plane boundary (general case)[J].Bull Seism Soc Am,1962,52(3):595-625.
    [13] Crampin S. Suggestions for a consistent terminology for seismic anisotropy[J].Geophys Prospect,1989,37(7):753-770. doi: 10.1111/j.1365-2478.1989.tb02232.x
    [14] Shuvalov A L.On the theory of plane inhomogeneous waves in anisotropic elastic media[J].Wave Motion,2001,34(4):401-429. doi: 10.1016/S0165-2125(01)00080-4
    [15] Cerveny V, Psencik I. Plane waves in viscoelastic anisotropic media —Ⅰ Theory[J].Geophys J Internat,2005,161:197-212. doi: 10.1111/j.1365-246X.2005.02589.x
    [16] Rasolofosaon P N J, Zinszner B E. Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks[J].Geophysics,2002,67(1):230-240.
  • 加载中
计量
  • 文章访问数:  3262
  • HTML全文浏览量:  204
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-04-16
  • 修回日期:  2008-07-02
  • 刊出日期:  2008-09-15

目录

    /

    返回文章
    返回