留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Navier-Stokes方程的全离散Jacobi-球面调和谱方法

黄伟 郭本瑜

黄伟, 郭本瑜. Navier-Stokes方程的全离散Jacobi-球面调和谱方法[J]. 应用数学和力学, 2008, 29(4): 409-431.
引用本文: 黄伟, 郭本瑜. Navier-Stokes方程的全离散Jacobi-球面调和谱方法[J]. 应用数学和力学, 2008, 29(4): 409-431.
HUANG Wei, GUO Ben-yu. Fully Discrete Jacobi-Spherical Harmonic Spectral Method for Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2008, 29(4): 409-431.
Citation: HUANG Wei, GUO Ben-yu. Fully Discrete Jacobi-Spherical Harmonic Spectral Method for Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2008, 29(4): 409-431.

Navier-Stokes方程的全离散Jacobi-球面调和谱方法

基金项目: 国家自然科学基金资助项目(10771142);上海市科委科技攻关资助项目(75105118);上海市重点学科建设资助项目(T0401,J50101);上海高校E-研究院基金资助项目(E03004);上海大学创新基金资助项目(A.10-0101-07-408)
详细信息
    作者简介:

    黄伟(1960- ),男,上海人,副教授,博士(联系人.Tel:+86-21-66133908(o);+86-21-59915200(h);E-mail:weihuang@mail.shu.edu.cn).

  • 中图分类号: O174.41;O241.82;O357.1

Fully Discrete Jacobi-Spherical Harmonic Spectral Method for Navier-Stokes Equations

  • 摘要: 提出了一种用于球内Navier-Stokes方程的全离散Jacobi-球面调和谱方法,并证明了它的广义稳定性和收敛性.数值结果表明了该方法的有效性.该方法也可应用于球形区域中的其它问题.
  • [1] Girault V,Raviart P A.Finite Element Approximation of the Navier-Stokes Equations[M].Lecture Notes in Mathematics.794.Berlin: Springer-Verlag,1979.
    [2] GUO Ben-yu. Difference method for fluid dynamics-numerical solution of primitive equations[J].Scientia Sinica,Series A,1981,24(3):297-312.
    [3] 郭本瑜.偏微分方程的差分方法[M].北京:科学出版社,1988.
    [4] Roache P J.Computational Fluid Dynamics[M].2nd Ed. Albuquerque:Hermosa Publishers,1976.
    [5] Téman R.Navier-Stokes Equations[M].Amsterdam: North-Holland,1977.
    [6] Bernardi C, Maday Y.Spectral methods[A].In:Ciarlet P G,Lions J L,Eds.Handbook of Numerical Analysis.Vol 5.Techniques of Scientific Computing[C].Amsterdam:Elsevier,1997,209-486.
    [7] Boyd J P.Chebyshev and Fourier Spectral Methods[M].Berlin:Springer-Verlag,1989.
    [8] Canuto C, Hussaini M Y,Quarteroni A,et al.Spectral Methods in Fluid Dynamics[M].Berlin:Springer-Verlag,1988.
    [9] Funaro P.Polynomial Approximations of Differential Equations[M].Berlin:Springer-Verlag,1992.
    [10] Gottlieb D, Orszag S A.Numerical Analysis of Spectral Methods: Theory and Applications[M].Philadelphia: SIAM-CBMS, 1977.
    [11] GUO Ben-yu.Spectral Methods and Their Applications[M].Singapore:World Scientific,1998.
    [12] GUO Ben-yu. Spectral method for Navier-Stokes equations[J].Scientia Sinica, Series A,1985,28(11):1139-1153.
    [13] GUO Ben-yu, MA He-ping. Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier-Stokes equations[J].SIAM J Numer Anal,1993,30(4):1066-1083. doi: 10.1137/0730055
    [14] Hald O H. Convergence of Fourier methods for Navier-Stokes equations[J].J Comput Phys,1981,40(2):305-317. doi: 10.1016/0021-9991(81)90212-6
    [15] Maday Y, Quarteroni A. Spectral and pseudospectral approximations of the Navier-Stokes equations[J].SIAM J Numer Anal,1982,19(4):761-780. doi: 10.1137/0719053
    [16] MA He-ping, GUO Ben-yu. Combined finite element and pseudospectral method for the three-dimensional Navier-Stokes equations[J].Chinese Annals of Mathematics,Series B,1992,13(3):350-367.
    [17] Boyd J P. The choice of spectral functions on a sphere for boundary and eigenvalue problems: a comparison of Chebyshev, Fourier and associated Legendre expansion[J].Mon Weather Rev,1978,106(8):1184-1191. doi: 10.1175/1520-0493(1978)106<1184:TCOSFO>2.0.CO;2
    [18] Efstathiou G. A model of supernova feedback in galaxy formation[J].Mon Not R Astron Soc,2000,317(3):697-719. doi: 10.1046/j.1365-8711.2000.03665.x
    [19] Haltiner G J, Williams R T.Numerical Prediction and Dynamical Meteorology[M].New York: John Wiley & Sons, 1980.
    [20] Williamson D L, Drake J B, Hack J J,et al.A standard test set for numerical approximations to the shallow water equations in spherical geometry[J].J Comput Phys,1992,102(1):211-224. doi: 10.1016/S0021-9991(05)80016-6
    [21] Bramble J H, Pasciak J E.A boundary parametric approximation to linearized scalar potential magnetostatic field problem[J].Appl Numer Math,1985,1(6):493-514. doi: 10.1016/0168-9274(85)90034-0
    [22] CAO Wei-ming, GUO Ben-yu. A pseudospectral method for vorticity equations on spherical surface[J].Acta Math Appl Sinica,1997,13(2):176-187. doi: 10.1007/BF02015139
    [23] GUO Ben-yu. A spectral method for the vorticity equation on the surface[J].Math Comp,1995,64(211):1067-1079.
    [24] GUO Ben-yu, CAO Wei-ming. A spectral method for the fluid flow with low Mach number on the spherical surface[J].SIAM J Numer Anal,1995,32(6):1764-1777. doi: 10.1137/0732080
    [25] GUO Ben-yu. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations[J].J Math Anal Appl,2000,243(2):373-408.
    [26] GUO Ben-yu, HUANG Wei.Mixed Jacobi-spherical harmonic spectral method for Navier-Stokes equations[J].Appl Numer Math,2007,57(8):939-961. doi: 10.1016/j.apnum.2006.09.003
    [27] GUO Ben-yu, WANG Li-lian.Jacobi interpolation approximations and their applications to singular differential equations[J].Adv in Comput Math,2001,14(3):227-276. doi: 10.1023/A:1016681018268
    [28] GUO Ben-yu, WANG Li-lian. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces[J].J Approx Theory,2004,128(1):1-41. doi: 10.1016/j.jat.2004.03.008
    [29] Chorin A J. The numerical solution of the Navier-Stokes equations for an incompressible fluid[J].Bull Amer Math Soc,1967,73(6):928-931. doi: 10.1090/S0002-9904-1967-11853-6
    [30] Chorin A J. Numerical solution of the Navier-Stokes equations[J].Math Comp,1968,22(104):745-762. doi: 10.1090/S0025-5718-1968-0242392-2
    [31] Lions J L. On the numerical approximation of some equations arising in hydrodynamics[A].In:Birkhoff G, Varga R S, Eds.Numerical Solution of Field Problems in Continuum Physics, SIAM-AMS Proceedings Ⅱ[C].Providence, Rhode Island:AMS,1970,11-23.
    [32] Courant R, Hilbert D.Methods of Mathematical Physics[M].Vol 1.New York: Interscience Publisher, 1953.
    [33] Bergh J, Lfstrm J.Interpolation Spaces,an Introduction[M].Berlin: Springer-Verlag,1976.
    [34] Dumas G, Leonard A.A divergence-free spectral expansions method for three-dimensional flow in spherical-gap geometries[J].J Comput Phys,1994,111(2):205-219. doi: 10.1006/jcph.1994.1056
    [35] Friedman A.Partial Differential Equations[M].New York: Holt, Rinehart and Winston, 1969.
    [36] Adams R A.Sobolev Spaces[M].New York: Academic Press, 1975.
    [37] 陈恕行.偏微分方程概论[M].北京:人民教育出版社,1981.
  • 加载中
计量
  • 文章访问数:  3264
  • HTML全文浏览量:  137
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-10-19
  • 修回日期:  2008-03-07
  • 刊出日期:  2008-04-15

目录

    /

    返回文章
    返回